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Take-Home Message

Safety-critical embedded software design best 
tackled through proper specification, followed 

by automatic coding of specs AND their 
semantics

This is the best mechanism to leverage domain-
specific knowledge

Examples: Control, collision avoidance systems



Outline
• Motivation/background
• Decision and Control Laboratory
• A simple control example
• Stability and performance analyses: Why go 

beyond specs and into implementation?
• What proofs for what system representations?
• Journal proofs, block diagram proofs, program 

proofs
• Closed-loop system properties
• Tool implementation



Safety-critical software

• Software that interacts in real time with 
physical system (usually big-heavy and/or 
very costly and/or super-dangerous) and 
possibly humans.

• Aircraft 
• Rockets
• Missiles
• Radiotherapy machines



Some examples of 
why you should care



Facts
• How many lines of code produced by 

average software engineer for spacecraft 
applications
0.6 Lines Of Code Per Hour 

• F22 Raptor: 1.7M LOC
• F35 JSF: 5.7M LOC
• Boeing 787: 6.5M LOC



Accidents/Incidents
• “Some of the most widely cited software-related 

accidents in safety-critical systems involved a 
computerized radiation therapy machine called 
the Therac-25.”

• “The new US stealth fighter, the F-22 Raptor, 
was deployed for the first time to Asia earlier this 
month. On Feb. 11, twelve Raptors flying from 
Hawaii to Japan were forced to turn back when a 
software glitch crashed all of the F-22s' on-board 
computers as they crossed the international date 
line.”



Accidents/Incidents Ariane 5

• “The Ariane 5 software reused the 
specifications from the Ariane 4, but the 
Ariane 5's flight path was considerably 
different and beyond the range for which 
the reused computer program had been 
designed. Specifically, the Ariane 5's 
greater acceleration caused the back-up 
and primary inertial guidance computers to 
crash, after which the launcher's nozzles 
were directed by spurious data.”



Patriot disaster
• (1) the Patriot battery at Dhahran failed to track 

and intercept a Scud missile due to a software 
problem in the system's weapons control 
computer; (2) the software problem caused an 
inaccurate tracking calculation which became 
worse the longer the system operated; (3) at the 
time of the incident, the battery had operated 
continuously for over 100 hours and the 
inaccuracy was serious enough to cause the 
system to look in the wrong place for the 
incoming Scud; 

(The scud killed 21 friendly soldiers)



Remedies: Analyses 
• Simulation OK: SIL, HIL.
• Enormous efforts devoted to static program analysis

– Model Checking (Sifakis/Clarke/Holzmann)
– Abstract Interpretation (Cousot, Cousot)
– WCET analysis
– PVS (Sankar, Owre, Rushby)

• Very strong appetite for code as input to analyzers…
• 100’s of current applications, including at ENAC
• Airbus A340/380, Ariane 5 (a posteriori)
• ENAC’s Paparazzi on NASA’s list of static analysis 

milestones in VVFCS program
• DO178C acknowledges power of formal methods



Remedies: Design
• Most errors arise during specification of 

software, not coding.
• Allow the engineer to specify, then auto-

code.
• SCADE/Esterel Technologies, 

Picture2code/Pratt & Whitney, Realtime
Workshop/Mathworks, Gene-
auto/ENSEEIHT, Gryphon/Rockwell-
Collins.



How do we reconcile analysis and design?



A simple control example

d
dt

∙
x
ẋ
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A simple control example
ỹ(t) = SAT(y(t)),

u(s) = 128
s+ 1

s+ 0.1

s/5 + 1

s/50 + 1
ỹ(s),

Step response
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Discrete time 
Implementation
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Control system design as seen by control 
engineers
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Code-level analyses of control software
• Most significant contribution is from Patrick Cousot’s research group at 

Ecole Normale Superieure, Paris. 
• Abstract interpretation aims at capturing semantics of programs
• Most important application is ASTREE analyzer for Airbus A380 control 

code.
• From Feret, “Static Analysis of Digital Filters”, 2004 (also with ASTREE).



A Paradigm Shift Enabled by Good 
Specification Analyses

Credible autocoder (a la Rinard)
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Desirable attributes of “system 
proofs”

• Must be expressive enough to tell nontrivial 
statements about system

• Must speak the language of system 
representation, eg: “IEEE Transactions on 
Automatic Control proofs” written in natural 
language (one wonders…), “Simulink proofs”
expressed in Simulink, “Program proofs”
expressed in formal languages.

• Must be “elementary enough” to be easily 
checked wherever necessary. 



Back to the Example
The control-systemic way:

Assume the controller state is initialized at xc,0 = 0

What range of values could be reached by the state xc,k and the control
variable uk?
There is a variety of options, including computation of -1 norms. 
A Lyapunov-like proof (from Boyd et al., Poola):

The ellipsoid EP =
©
x ∈ R2 | xTPx ≤ 1

ª
.

is invariant. None of the entries of x exceeds 7 in size.

P =10−3
∙
0.6742 0.0428
0.0428 2.4651

¸
.

xc,k+1 =

∙
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0.010 1.000

¸
xc,k +

∙
1
0

¸
SAT(yk)

uk = − [564.48 0]xc,k + 1280 SAT(yk)



Lyapunov functions and invariant 
ellipses

5 4 32

φ

φdot



A proof for control people

Indeed a linear combination of (*) and xTPx ≤ 1 and w2 ≤ 1 yields the
desired property.

P that works is P =10−3
∙
0.6742 0.0428
0.0428 2.4651

¸
, with μ = 0.9991 and tautology

(*) is 10−3
∙
x
w

¸T ⎡⎣ −0.5044362 −0.0135878 0.3374606
−0.0135878 −0.0003759 0.00909
0.3374606 0.00909 −0.2258

⎤⎦∙ x
w

¸
≤ 0.

∀t, xTPx ≤ 1 is equivalent to xTk Pxk ≤ 1⇒ xTk+1Pxk+1 ≤ 1

Or (Ax+Bw)TP (Ax+Bw) ≤ 1 whenever xTPx ≤ 1 and w2 ≤ 1

True if there exists μ such that (Ax+Bw))TP (Ax+Bw)−μxTPx−(1−μ)w2 <
0, (*) a tautology.
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Simulink, Discrete Time Formal Semantics

x2(0) = 0

x1(0) = 0



{true}
1: A = [0.4990, -0.0500; 0.0100, 1.0000];

{true}
2: C = [-564.48, 0];

{true}
3: B = [1;0];D=1280

{true}
4: x = zeros(2,1);

{x ∈ EP }
5: while 1

{x ∈ EP }
6: y = fscanf(stdin,"%f")

{x ∈ EP }
7: y = max(min(y,1),-1);©
x ∈ EP , y2 ≤ 1

ª
8: u = C*x+D*y;

{x ∈ EP , u2 ≤ 2(CP−1CT +D2), y2 ≤ 1}
9: fprintf(stdout,"%f\n",u)
{x ∈ EP , y2 ≤ 1, (Ax+By)TP (Ax+By)− 0.01xTPx− 0.99y2 ≤ 0}
skip©
Ax+By ∈ EP , y2 ≤ 1

ª
10: x = A*x + B*y;

{x ∈ EP }
11: end

{true}
1: A = [0.4990, -0.0500; 0.0100, 1.0000];

{true}
2: C = [-564.48, 0];

{true}
3: B = [1;0];D=1280

{true}
4: x = zeros(2,1);

{x ∈ EP }
5: while 1

{x ∈ EP }
6: y = fscanf(stdin,"%f")

{x ∈ EP }
7: y = max(min(y,1),-1);©
x ∈ EP , y2 ≤ 1

ª
8: u = C*x+D*y;

{x ∈ EP , u2 ≤ 2(CP−1CT +D2), y2 ≤ 1}
9: fprintf(stdout,"%f\n",u)
{x ∈ EP , y2 ≤ 1, (Ax+By)TP (Ax+By)− 0.01xTPx− 0.99y2 ≤ 0}
skip©
Ax+By ∈ EP , y2 ≤ 1

ª
10: x = A*x + B*y;

{x ∈ EP }
11: end

Commented code



Adding the controlled plant as part of the 
controller’s semantics
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Front End: Formal comment writing

• ANSI/ISO C Specification Language (ACSL) can 
be used to formally comment C programs and 
can be handled by Frama-C.

• Start from Simulink
• End with commented C code

Controller 
Specifications
+proof

Credible 
autocoder

Documented
(auto)-code

Proof 
checker

Go/no-go

(third party)

(user)

(certification
Authority)



ANNOTATION LANGUAGE
• On the Simulink Side

– Must be able to write system semantics and 
proofs supporting semantics.

• On the C side
– Same requirements of expressivity, but 

annotations must be readable by certification 
software.

– We express everything in ACSL.



A prototype front-end built on Gene-Auto
Thank you Marc Pantel, Arnaud Dieumegard, Andres Toom



Back End: Verification of Code Semantics

Controller 
Specifications
+proof

Credible 
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Documented
(auto)-code

Proof 
checker

Go/no-go

(third party)

(user)

(certification
Authority)



FRAMA-C

• Developed by CEA-LIST and INRIA

• Hoare Style annotation language. 

• Can interface with manual and automated
proving software (e.g., PVS).

• Has the required expressivity.



INTERFACING WITH VERIFICATION 
TOOLS

• We use Frama-C because it can generate
verification conditions for various pieces of 
software

• The interface with PVS allows us to use 
the work done at the National Institute of 
Aerospace (Heber Herencia) and SRI 
(Sam Owre) on verification of linear
algebraic systems. (NFM 2012)



A physical example: 3 DOF 
helicopter



And it still works!!!



Next step: F-18 replica from 
Rockwell-Collins

http://www.youtube.com/watch?v=QJkIONTzbNM



Application to Collision avoidance
TCAS / last resort safety net



Vehicle guidance and collision 
avoidance

• Current TCAS designed as computer 
pseudo-code and specifications

Very hard to formally prove
anything about TCAS.

Where are the invariants? 
Good luck with that. A nice 
challenge for static analyzers.



ACAS-X: A new development

• An airborne, embedded collision 
avoidance system like TCAS. Same 
functionality.

• Developed by Lincoln Laboratory, 
Lexington, Massachusetts, and MIT.

• Reportedly improvement over TCAS.
• Development encouraged by Federal 

Aviation Administration, and discussed by 
FAA/EASA/DGAC-DTI groups.



New Development: ACAS-X
• Designed according to sound theoretical, 

model-based principle of Dynamic 
Programming:

J∗(x) = minu (c(x) + J∗(x+))
x+ = f (x, u)

Think of J as total probability of collision during

encounter, c(x) as probability of collision at state x

during small instant. Need other terms to prevent

aircraft from making, e.g. Split S maneuver.



What’s a Split-S?

2002: First autonomous aerobatic split-S (Gavrilets, Feron, Mettler)



ACAS-X certification
From Kochenderfer, 2010

“In particular, since this is a new approach to TCAS logic development, 
the  certifiability of the resulting logic is of particular concern. If this new 
approach is to be used simply as an aid to engineers who are 
developing or revising collision avoidance pseudocode, then there 
would be little impact on the certification process. However, if the logic 
produced by dynamic programming or some other automated process 
is to be used directly in a future version of TCAS, then the certification 
process may be somewhat different. The core of the certification
process will be the same, involving rigorous simulation studies and 
flight tests to prove safety and demonstrate operational acceptability. 
However, the vetting of the logic itself will involve more than just 
studying the logic that will be deployed on the system. Depending on 
the representation of the logic, it may not be directly comprehensible by 
an engineer. Therefore, confidence would need to be established in the 
safety community that the methods used to generate the logic are
sound.”



Solution in part via close 
designer/software analysis 

cooperation
• Under “optimal” decision policy,        , the 

optimal cost, decays along trajectories.

• ie acts a bit like a…. Lyapunov function.

• So plenty of opportunities to extract essential 
ACAS-X software properties at design phase.

J∗

J∗



Lyapunov functions yield software 
invariants…

5 4 32

φ

φdot



4 3 2 1
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4 5
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So do optimal cost functions…
(Note: This is NOT ACAS-X)



Same challenges as for inner-loop 
control functions

•Lincoln Lab’s ACAS-X is designed via discretized state-space.
•Specification-level models used to design system are not 
identical to reality



Conclusion

• It is possible to generate safety-critical 
control code from specifications, all-
equipped with semantics and proofs.

• Code-level analyses are possible, and 
much easier than analyses from code 
alone.
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