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Context and Motivations

Pasma processes main caracteristics

☞ Plasma core mainly quasineutral ;
☞ Most of the physics explained by non quasi-

neutral localized phenomena (POS operating,
instalibities of the tokamak plasma edge,. . .) ;

☞ Time dependant interfaces between quasineu-
tral and non quasi neutral areas.

Main stream numerical methods overview

☞ Asymptotic models derivation (P0 for λ =
λD/L ≪ 1) to built efficient numerical methods.

☞ Use of the non quasi-neutral model (Pλ for
λ = λD/L = O(1)) in regions where the limit
regime is not valid. (Opening of the POS, ins-
talibities of the tokamak plasma edge,. . .) ;

☞ Coupling strategy with interface tracking pro-
cedure.

Breakthrough strategy :
Asymptotic-Preserving methods

☞ Numerical scheme
consistant with Pλ

for λ = O(1) ;
☞ Numerical schema

consistant with P0 for
λ ≪ 1 ;

☞ Inconditionnal sta-
bility with respect to
λ.
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FIGURE 1: AP-
schemes consis-
tancy properties.

(a) Z machine. (b) Plasma Opening switch.

FIGURE 2: X-ray generator (Z machine at San-
dia Lab, University of texas). Plasma Opening
Switch used to compress the power (a). A POS
is used to transmit a high power current a com-
press the pulse(b) : the impedance of the de-
vice is rapidly increased thanks to the interac-
tion of a plasma with an electromagnetic field.
During this process very localized, non quasi-
neutral, phenomena are determinant.

FIGURE 3: Magnetically confined fusion
plasma : ITER experiment schematic represen-
tation. The simulation of the plasma core as
well as the plasma edge is one of the most im-
portant challenge for modern numerical tools.

Asymptotic preserving schemes

AP-scheme derivation overview :
the Euler-Poisson system near quasineutrality

☞ Definition of the model for the standard regime (Pλ)

(Pλ)















∂tn +∇ · q = 0,

∂tq +∇
(

q ⊗ q

n

)

+∇p(n) = n∇φ,

λ2∆φ = n− 1,

☞ Investigation of the asymptotic modelP 0

(P0)



















∇ · q = 0,

∂ tq +∇ (q ⊗ q) + p(n) = ∇φ,

n = 1 , continuity eq. :∇ · (n∇φ) = ∇2 :

(

q ⊗ q

n
+ p(n)

)

☞ Reformulation :Derive a system of equations equivalent toPλ in
which the limitλ → 0 is regular : Reformulated Poisson equation

λ2∂2tt(−∆φ)−∇ · (n∇φ) = −∇2 :

(

q ⊗ q

n
+ p(n)

)

.

This equation does not degenerate in the limitλ → 0. It is equivalent
to the Poisson equation under simple assumptions on the initial data.

AP-schemes for plasmas
near quasineutrality :
main achievements

☞ Fluid models : Euler-
Poisson System ana-
lysis [DLV08] and
different AP formula-
tions and 2D numerical
bi-fluid simulations
[CDV07a, CDV07b].
One dimensional bi-
fluid Euler Maxwell
system numerical
investigations [DDS].

☞ Kinetic models :
Different Asympto-
tic preserving for-
mulations for the
Vlasov-Poisson system
[DDN06, DDNSV10].
Ongoing work for
the Vlasov Maxwell
systems [Doyen].

Numerical simulations (Fluid models)
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FIGURE 4: Euler-Poisson 2D bluifluid simulation of a plasma slab expansion between two electrods.
Computations carried out with an AP-scheme and10 ≤ λD/∆x ≤ 10−2 and a mass ratiomi/me = 10−4.
Left (Middle) : electronic speed ; (ionic density) as a function of space (t=0.1 s). Right : time evolution
of the flowing current, comparison with Child-Langmuir Law.
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FIGURE 5: Plasma Opening Switch simulation with the 1D bifluid Euler-Maxwell system. Classical
scheme compared to an AP-Scheme with either∆t ·ωpe = 1/20 andλD/∆x = 5 (resolved) or∆t ·ωpe = 3
andλD/∆x = 1/4 (unresolved). Left(Middle) : electronic (ionic) momentum; Right : Magnetic field.

Numerical simulations (Kinetic models)

Plasma slab expansion : physical and numerical settings

☞ Maxwellian distribution withni0 andne0 (seeFigure 6) andTe0 = 103Ti0.
☞ Electron to ion mass ratioε = 1836.
☞ Size of the domainA = 103λ , size of the half slabL/2 = 20λ.
☞ Simulation time :t = 30ω−1

i =
√
εω.

Computation ResolvedUnder res.Poor res.

∆t 0.05ω−1 3ω−1 3ω−1

∆x 0.2λ 4λ 4λ

Nb. of particles 5× 106 5× 106 2.5× 105

TABLE 1: Computation caracteristics : Resol-
ved, Under resolved and Poor resolution nu-
merical parameters.

L/2 A

ni0 =

{

n0 forx ∈ [0, L/2] ,
0 forx ∈ ]L/2, A] .

Boltzmann electrons :
ne0 = n0exp(φ0) ,

with −λ2∇φ0 = ni0 − ne0 .

FIGURE 6: Initial densities
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(a) Resolved
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(b) Under resolved
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(c) Poor resolution

FIGURE 7: Plasma expansion aftert = 30ω−1
i simulated by a bi-fluid 1D Vlasov-Poisson model and

using Particle-In-Cell methods. Electric field (top) as plasma density (middle) and electron mean velo-
city (bottom) as a function of space. Comparisons of a classical explicitscheme, different direct implicit
schemes and two Asymptotic-Preserving methods [DDN06, DDNSV10] with different resolutions as
detailled intable 1.
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