Numerical methods for fluid and kinetic plasma models in the quasineutral limit

Pierre CRISPEL, Pierre DEGOND, Fabrice DELUZET, Laurent NAVORET, Dominique SAVELIEF, Ann-Bang SUN, Marie-Hélène VIGNAL.

Context and Motivations

Pasma processes main caracteristics

- Plasma core mainly quasineutral;
- Most of the physics explained by non quasineutral localized phenomena (POS operating, instalibities of the tokamak plasma edge, ...);
- Time dependant interfaces between quasineu-

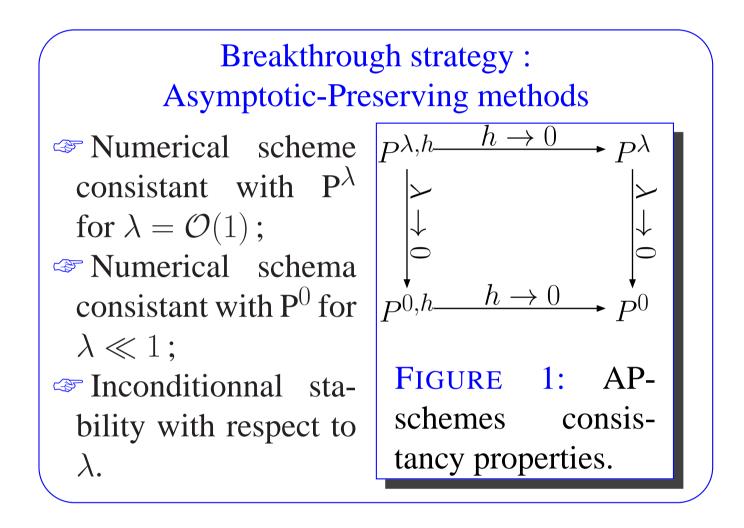
Numerical simulations (Kinetic models)

Plasma slab expansion : physical and numerical settings

- Size of the domain $A = 10^{3} \lambda$, size of the half slab $L/2 = 20\lambda$.
- rightarrow Simulation time : $t = 30\omega_i^{-1} = \sqrt{\varepsilon}\omega$.

tral and non quasi neutral areas.

Main stream numerical methods overview
Asymptotic models derivation (P⁰ for λ = λ_D/L ≪ 1) to built efficient numerical methods.
Use of the non quasi-neutral model (P^λ for λ = λ_D/L = O(1)) in regions where the limit regime is not valid. (Opening of the POS, instalibities of the tokamak plasma edge, ...);
Coupling strategy with interface tracking procedure.



(a) Z machine. (b) Plasma Opening switch.

FIGURE 2: X-ray generator (Z machine at Sandia Lab, University of texas). Plasma Opening Switch used to compress the power (a). A POS is used to transmit a high power current a compress the pulse(b) : the impedance of the device is rapidly increased thanks to the interaction of a plasma with an electromagnetic field. During this process very localized, non quasineutral, phenomena are determinant.

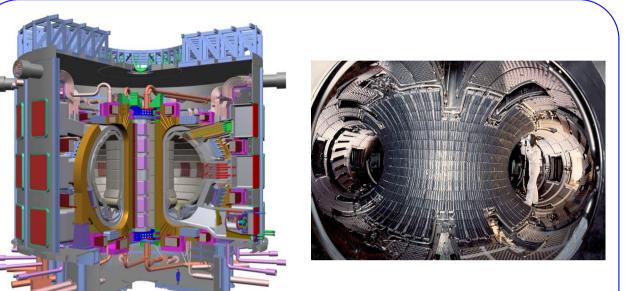


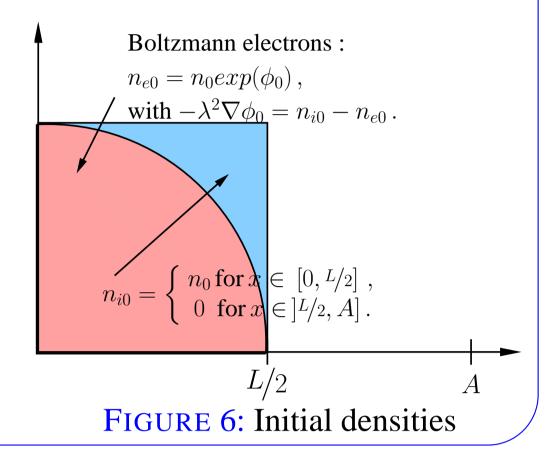
FIGURE 3: Magnetically confined fusion plasma : ITER experiment schematic representation. The simulation of the plasma core as well as the plasma edge is one of the most important challenge for modern numerical tools.

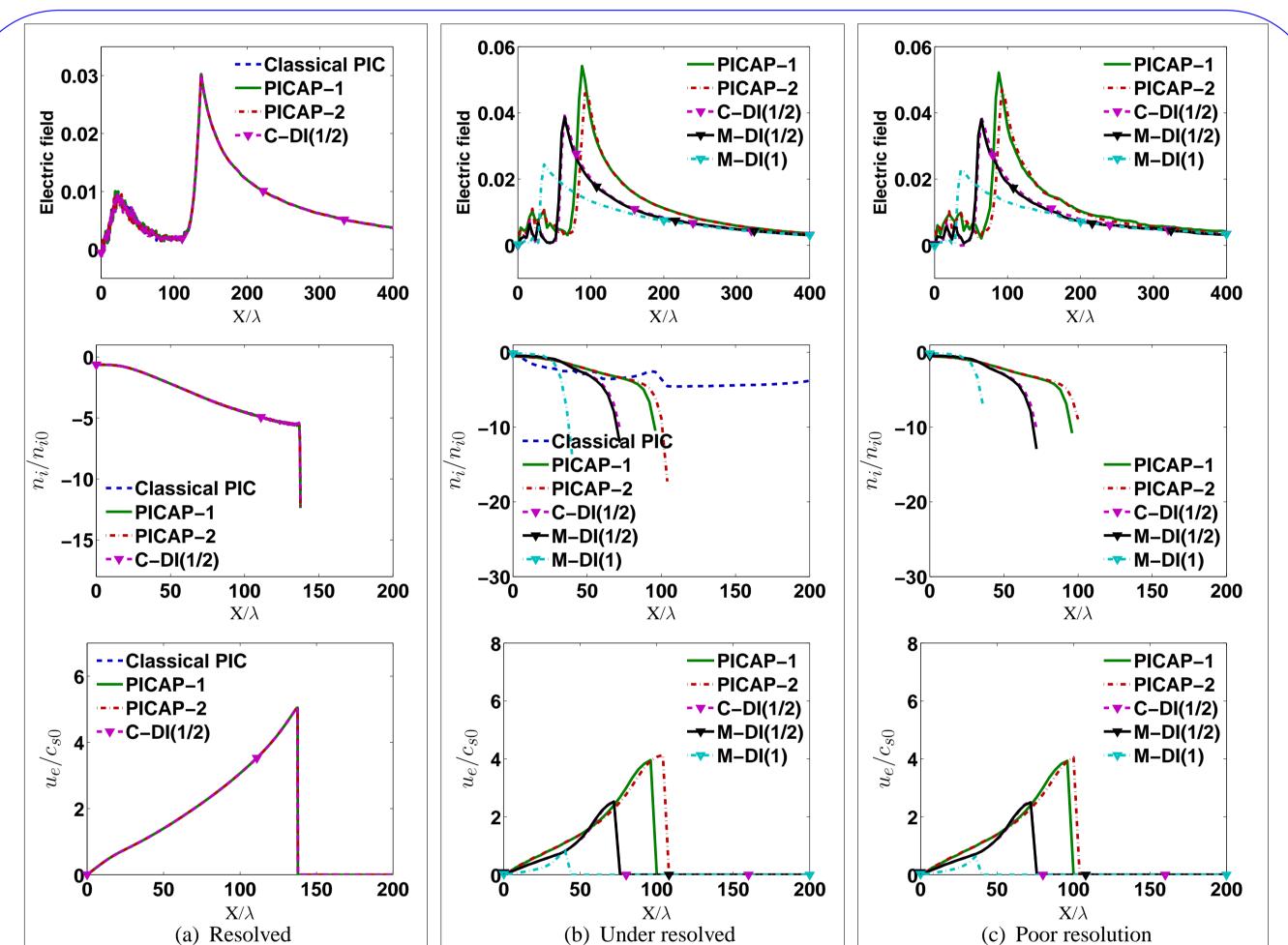
Asymptotic preserving schemes

AP-scheme derivation overview : the Euler-Poisson system near quasineutrality To Definition of the model for the standard regime (P^{λ})

Computation	Resolved	Under res.	Poor res.
Δt	$0.05 \omega^{-1}$	$3 \omega^{-1}$	$3 \omega^{-1}$
Δx	0.2λ	4λ	4λ
Nb. of particles	5×10^6	5×10^6	2.5×10^5

TABLE 1: Computation caracteristics : Resol-ved, Under resolved and Poor resolution nu-merical parameters.





$$\mathbf{P}^{\lambda}) \begin{cases} \partial_t n + \nabla \cdot q = 0, \\ \partial_t q + \nabla \left(\frac{q \otimes q}{n}\right) + \nabla p(n) = n \nabla \phi, \\ \lambda^2 \Delta \phi = n - 1, \end{cases}$$

 \sim Investigation of the asymptotic model P^0

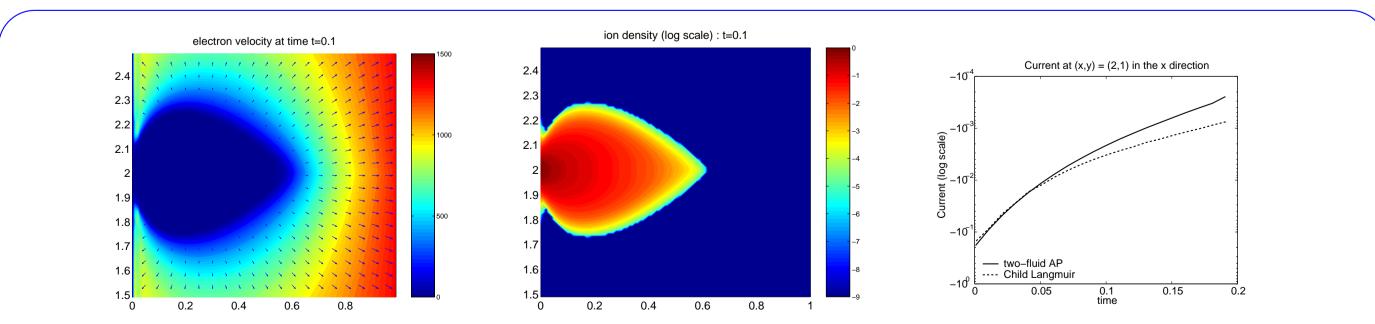
$$(\mathbf{P}^{0}) \begin{cases} \nabla \cdot q = 0, \\ \partial_{t}q + \nabla (q \otimes q) + p(n) = \nabla \phi, \\ n = 1, \text{ continuity eq.} : \nabla \cdot (n \nabla \phi) = \nabla^{2} : \left(\frac{q \otimes q}{n} + p(n)\right) \end{cases}$$

 \sim Reformulation : Derive a system of equations equivalent to P^{λ} in which the limit $\lambda \to 0$ is regular : Reformulated Poisson equation

$$\lambda^2 \partial_{tt}^2 (-\Delta \phi) - \nabla \cdot (n \nabla \phi) = -\nabla^2 : \left(\frac{q \otimes q}{n} + p(n) \right) \,.$$

This equation does not degenerate in the limit $\lambda \rightarrow 0$. It is equivalent to the Poisson equation under simple assumptions on the initial data.

Numerical simulations (Fluid models)



near quasineutrality : main achievements

Fluid models : Euler-Poisson System ana-[DLV08] and lysis different AP formulations and 2D numerical bi-fluid simulations [CDV07a. CDV07b]. One dimensional bi-Euler Maxwell fluid numerical system investigations [DDS]. Kinetic models Different Asymptopreserving fortic mulations for the Vlasov-Poisson system [DDN06, DDNSV10]. work for Ongoing the Vlasov Maxwell systems [Doyen].

FIGURE 7: Plasma expansion after $t = 30\omega_i^{-1}$ simulated by a bi-fluid 1D Vlasov-Poisson model and using Particle-In-Cell methods. Electric field (top) as plasma density (middle) and electron mean velocity (bottom) as a function of space. Comparisons of a classical explicit scheme, different direct implicit schemes and two Asymptotic-Preserving methods [DDN06, DDNSV10] with different resolutions as detailled in table 1.

References

[CDV07a] P. Crispel, P. Degond, M-H. Vignal, *A plasma expansion model based on the full Euler-Poisson system*, Mathematical Models and Methods in Applied Sciences, 17 (2007), pp. 1129–1158.

[CDV07b] P. Crispel, P. Degond, M-H. Vignal, *An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit*, J. Comp. Phys., 223 (2007), pp. 208-234.

[Degond] P. Degond, Asymptotic-Preserving Schemes for Fluid Models of Plasmas, submitted.

- [DDN06] P. Degond, F. Deluzet, L. Navoret, *An asymptotically stable Particle-In-Cell (PIC) scheme for collisionless plasma simulations near quasineutrality*, C. R. Acad. Sci. Paris, Ser.I, 343 (2006) 613.
- [DDNSV10] P. Degond, F. Deluzet, L. Navoret, A.-B. Sun, M.-H. Vignal, *Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality*, J. Comput. Phys., 229 (2010), pp. 5630–5652.

FIGURE 4: Euler-Poisson 2D bluifluid simulation of a plasma slab expansion between two electrods. Computations carried out with an AP-scheme and $10 \le \lambda_D / \Delta x \le 10^{-2}$ and a mass ratio $m_i/m_e = 10^{-4}$. Left (Middle) : electronic speed ; (ionic density) as a function of space (t=0.1 s). Right : time evolution of the flowing current, comparison with Child-Langmuir Law.

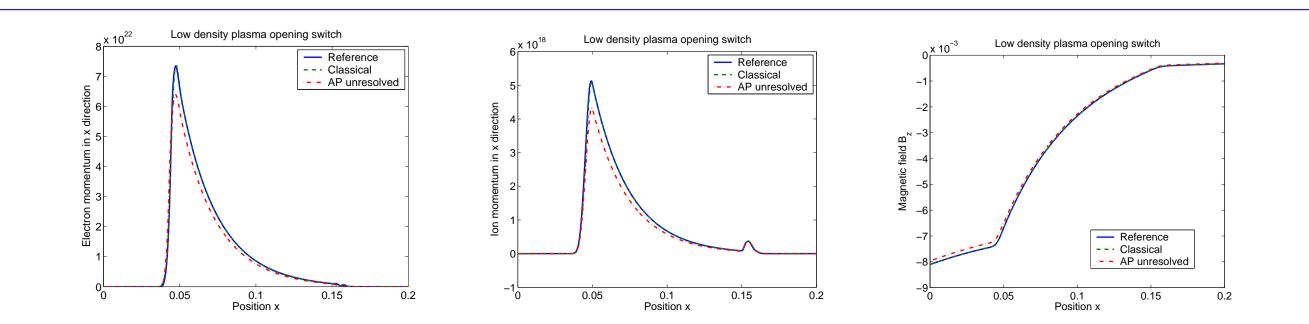


FIGURE 5: Plasma Opening Switch simulation with the 1D bifluid Euler-Maxwell system. Classical scheme compared to an AP-Scheme with either $\Delta t \cdot \omega_{pe} = 1/20$ and $\lambda_D/\Delta x = 5$ (resolved) or $\Delta t \cdot \omega_{pe} = 3$ and $\lambda_D/\Delta x = 1/4$ (unresolved). Left(Middle) : electronic (ionic) momentum ; Right : Magnetic field.

[DDS] P. Degond, F. Deluzet, D. Savelief, *Numerical approximation of the Euler-Maxwell model in the quasineutral limit*, to appear in J. of Comp. Phys.

[DLV08] P. Degond, J-G. Liu, M-H. Vignal, *Analysis of an asymptotic preserving scheme for the Euler-Poison system in the quasineutral limit*, SIAM J. Numer. Anal. 46 (2008), pp. 1298-1322.

[Doyen] D. Doyen, An asymptotic Preserving Particle-In-Cell method for the Valsov-Maxwell system near quasineutrality, in preparation.

