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Context and Motivations

Large magnetic field plasma processes
main caracteristics

☞ Particle mobilities along the magnetic fiels lines much
larger than transverse ones ;

☞ Anisotropic medium with very different alined and
transverse (with respect to the magnetic field) time
scales ;

☞ Magnetic field magnitude non-uniform in the plasma
(core/edge) with a topology altered by instabilities (ITER
tokamak).

Main stream numerical methods overview

☞ Asymptotic models derivation : P0 for ε ≪ 1, ε being
the dimensionless clyclotron period, to remove the most
constraining scales ;

☞ Systematic use of coordinates adapted to the the magne-
tic field geometry ;

☞ Coupling strategy with the non reduced model Pε (inter-
face tracking procedure).

Path followed by the team
☞ Developement of asymp-

totic preserving methods
consistant with Pε for ε =
O(1) and with the asimpto-
tic model P0 for ε≪ 1 ;

☞ Inconditionnal stability
with respect toε.

☞ Use of coordinates and
meshes independant of the
magnetic field geometry.
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FIGURE 1: AP-
schemes consistancy
properties.

FIGURE 2: Space weather forecast :
The radio waves transmission may
be signigicantly altered by ionos-
pheric plasma perturbations (aurora,
particle precipitation, solar erup-
tions). The Earth upper atmosphere
is a very anisotropic medium due to
the presence of the Earth magnetic
field. Left : Australis aurora (space
observation). Right : Von-Allen belt
(Earth magnetosphere).

FIGURE 3: ITER : magnetically
confined fusion. Left : the 48 ele-
ments of the ITER Magnet system
will generate a magnetic field2 · 105

times higher than that of the Earth.
Right : Geometry of magnetic field
lines (in the abence of instabilities).

Asymptotic preserving schemes

AP-scheme for anisotropic diffusion problems : derivationoverview

☞ Definition of the model for the standard regime (Pǫ) :
the magnetic field is assumed to be aligned
with thez-direction :

(Pε)















∂2xxφ
ε +

1

ε
∂2zzφ

ε = fε , in Ωx × Ωz ,

φ = 0 , on∂Ωx ,

∂zφ = 0 , on∂Ωz .

In the limit ε→ 0 the systemP ε degenates

into
{

∂2zzψ = 0 , in Ωz ,
∂zψ = 0 , on∂Ωz .

This problem admits an infinte amount of so-
lutions (all the functions ofx). Consequently,
standard discretizations of theP ε problem have
a conditionning number that blows up with
ε→ 0.

☞ Integrating the anisotropic elliptic problem overΩz the limit of the solutionφ0 = limε→0 φ
ε

verifies

(P0)

{

∂2xxφ
0 = f̄ , in Ωx ,

φ0 = 0 , on∂Ωx .

wheref̄ =
∫

Ωz
f dz. The problem P0 is a well

posed problem defining uniquely the solution
the of Pε in the limit ε→ 0.

☞ Reformulation :

AP property guarantied by the so-
lution decompositionφ = φ̄ + φ′

[DDN, SIAM10].
➲ The mean valuēφ verifies a system si-

milar to P0.
➲ The fluctuation is provided by a sys-

tem analoguous toP ε. The property
φ̄′ = 0 ensures unicity of the solu-
tion and prevents the discrete system
condition number blow up for vani-
shingε (seeFigure 4).
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FIGURE 4: AP-scheme and Pε standard discretization
condition number as functions ofε.

AP-scheme for anisotropic diffusion problems : main achievements

☞ Extension to arbitrary anisotropy directions with Cartesian meshes and coordinates (Figure 5) :

① Duality based formulation : introduction of
two Lagragian multipliers to discretize the
spaces of mean and fluctuation (zero mean
value) functions [DDLNN, CMS].

② Micro-macro decomposition : the number
of unknowns is dramatically reduced (5 to
2) preserving the same AP-properties and
accuracy [DLNN] (seeTable 1).

Method # rows # non zero time

Mic.-Mac. 20× 103 623× 103 1.156 s

Dual.Based 50× 103 1563× 103 7.405 s

Stand. Meth.10× 103 156× 103 0.501 s
TABLE 1: Micro-Macro, Duality-Based and Stan-
dard discretizations comparison (100×100 grid).

③ Another route explored in [BDM] using a differential cracterisation of the mean and fluctuation
functionnal spaces (fourth order differential problem).

☞ Application to large magnetic field plasmas : 1D Euler-Lorrentz [DDSV, JCP2009] and Val-
sov system [DHV] under large magnetic fields. The two dimensional Euler-Lorrentz system
is investigated in [BDD, CICP]. A bifluid quasi neutral Euler-Lorentz model is considered in
[BDDM, KRM] (seeFigure 6).

☞ Application to non linear diffusion problems : a numerical method aimed at simulation the to-
kamak plasma temperature evolution is introduced in [MN] (seeFigure 7). A non linear diffusion
equation is investigated in [BDM] for the simulation of the full Euler-Lorentz system (with energy
equation and eventual non linear internal energy laws).

Numerical simulations
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FIGURE 5: Ellitpic anisotropic problem resolution with an heterogeneous oscillating magnetic field. (a)
plot of the magnetic field as a function of the two dimensionalspace variable, for a frequency oscillation
equal to 20. Approximation error norm for computations carried out on a uniform400 × 400 Cartesian
mesh withε = 1 (b) andε = 10−20 (c) as functions of the magnetic field oscillation frequency.

FIGURE 6: Bifluid Euler-Lorentz computations under large magnetic field and small Mach number : the
dimensionless gyrperiod and the Mach number are set to10−8. Electronic momentum as a function of
the two dimensional space variable. Computation carried out thanks to a classical scheme with a time
step∆t < 5 · 10−9 (Left) and the AP-scheme with a time step∆t > 10−6 (Right).
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(a) ε = 1, t = 0.01
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(a) ε = 10−15, t = 0.01
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FIGURE 7: Evolution of the tokamak temperature (T ) simulated by the non linear anisotropic diffusion
equation :∂tT − 1

ε∇|| · (K||T
5/2∇||T ) − ∇⊥ · (K⊥∇⊥T ) = 0, with K‖, K⊥ two constants and∇⊥

the derivative along the magnetic field direction. Temperature and magnetic field lines as a function of
the 2D space variable after10−2 s. forε = 1 (Left) andε = 10−15 (Right), with an isotrop gaussian as
initial data.
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