Asymptotic-Preserving schemes for strongly anisotropic diffusion problems and their application to large magnetic fields in plasmas

Pierre DEGOND, Fabrice DELUZET, Alexei LOZINSKI, Jacek NARSKI, Claudia NEGULESCU.

Context and Motivations

Large magnetic field plasma processes main caracteristics

- Particle mobilities along the magnetic fiels lines much larger than transverse ones;
- Anisotropic medium with very different alined and transverse (with respect to the magnetic field) time scales;
- Magnetic field magnitude non-uniform in the plasma (core/edge) with a topology altered by instabilities (ITER tokamak).

Main stream numerical methods overview

- Asymptotic models derivation : P^0 for $\varepsilon \ll 1$, ε being the dimensionless clyclotron period, to remove the most constraining scales;
- Systematic use of coordinates adapted to the magnetic field geometry;
- Coupling strategy with the non reduced model P^{ε} (interface tracking procedure).

Path followed by the team

- Developement of asymptotic preserving methods consistant with P^{ε} for $\varepsilon = \mathcal{O}(1)$ and with the asimptotic model P^0 for $\varepsilon \ll 1$;
- the model P° for $\varepsilon \ll 1$;

 Inconditionnal stability with respect to ε .
- Use of coordinates and meshes independant of the magnetic field geometry.

FIGURE 2: Space weather forecast: The radio waves transmission may be significantly altered by ionospheric plasma perturbations (aurora, particle precipitation, solar eruptions). The Earth upper atmosphere is a very anisotropic medium due to the presence of the Earth magnetic field. Left: Australis aurora (space observation). Right: Von-Allen belt (Earth magnetosphere).

FIGURE 3: ITER: magnetically confined fusion. Left: the 48 elements of the ITER Magnet system will generate a magnetic field $2 \cdot 10^5$ times higher than that of the Earth. Right: Geometry of magnetic field lines (in the abence of instabilities).

Asymptotic preserving schemes

AP-scheme for anisotropic diffusion problems : derivation overview

Definition of the model for the standard regime (P^{ϵ}) : the magnetic field is assumed to be aligned into with the z-direction :

$$\left\{ \begin{array}{l} \partial_{xx}^2 \phi^{\varepsilon} + \frac{1}{\varepsilon} \partial_{zz}^2 \phi^{\varepsilon} = f^{\varepsilon} \,, & \text{in } \Omega_x \times \Omega_z \\ \phi = 0 \,, & \text{on } \partial \Omega_x \,, \end{array} \right.$$

In the limit $\varepsilon \to 0$ the system P^{ε} degenates

 $\begin{cases} \partial_{zz}^2 \psi = 0 \,, & \text{in } \Omega_z \,, \\ \partial_z \psi = 0 & \text{on } \partial \Omega_z \end{cases}$

This problem admits an infinte amount of solutions (all the functions of x). Consequently, standard discretizations of the P^{ε} problem have a conditionning number that blows up with $\varepsilon \to 0$.

Integrating the anisotropic elliptic problem over Ω_z the limit of the solution $\phi^0 = \lim_{\varepsilon \to 0} \phi^{\varepsilon}$ verifies

$$(\mathbf{P}^0) \begin{cases} \partial_{xx}^2 \phi^0 = \bar{f}, & \text{in } \Omega_x, \\ \phi^0 = 0, & \text{on } \partial \Omega_x. \end{cases}$$

Reformulation:

AP property guarantied by the solution decomposition $\phi = \bar{\phi} + \phi'$ [DDN, SIAM10].

- The mean value $\bar{\phi}$ verifies a system similar to P^0 .
- The fluctuation is provided by a system analoguous to P^{ε} . The property $\bar{\phi}'=0$ ensures unicity of the solution and prevents the discrete system condition number blow up for vanishing ε (see Figure 4).

where $\bar{f} = \int_{\Omega_z} f \, dz$. The problem \mathbf{P}^0 is a well posed problem defining uniquely the solution the of \mathbf{P}^{ε} in the limit $\varepsilon \to 0$.

FIGURE 4: AP-scheme and P^{ε} standard discretization condition number as functions of ε .

AP-scheme for anisotropic diffusion problems : main achievements

Extension to arbitrary anisotropy directions with Cartesian meshes and coordinates (Figure 5):

1 Duality based formulation: introduction of two Lagragian multipliers to discretize the spaces of mean and fluctuation (zero mean value) functions [DDLNN, CMS].

2 Micro-macro decomposition: the number of unknowns is dramatically reduced (5 to 2) preserving the same AP-properties and accuracy [DLNN] (see Table 1).

 Method
 # rows
 # non zero
 time

 Mic.-Mac.
 20×10^3 623×10^3 1.156 s

 Dual.Based
 50×10^3 1563×10^3 7.405 s

 Stand. Meth.
 10×10^3 156×10^3 0.501 s

TABLE 1: Micro-Macro, Duality-Based and Standard discretizations comparison (100×100 grid).

- 3 Another route explored in [BDM] using a differential cracterisation of the mean and fluctuation functionnal spaces (fourth order differential problem).
- Application to large magnetic field plasmas: 1D Euler-Lorrentz [DDSV, JCP2009] and Valsov system [DHV] under large magnetic fields. The two dimensional Euler-Lorrentz system is investigated in [BDD, CICP]. A bifluid quasi neutral Euler-Lorentz model is considered in [BDDM, KRM] (see Figure 6).
- Application to non linear diffusion problems: a numerical method aimed at simulation the to-kamak plasma temperature evolution is introduced in [MN] (see Figure 7). A non linear diffusion equation is investigated in [BDM] for the simulation of the full Euler-Lorentz system (with energy equation and eventual non linear internal energy laws).

Numerical simulations

FIGURE 5: Ellitpic anisotropic problem resolution with an heterogeneous oscillating magnetic field. (a) plot of the magnetic field as a function of the two dimensional space variable, for a frequency oscillation equal to 20. Approximation error norm for computations carried out on a uniform 400×400 Cartesian mesh with $\varepsilon = 1$ (b) and $\varepsilon = 10^{-20}$ (c) as functions of the magnetic field oscillation frequency.

FIGURE 6: Bifluid Euler-Lorentz computations under large magnetic field and small Mach number: the dimensionless gyrperiod and the Mach number are set to 10^{-8} . Electronic momentum as a function of the two dimensional space variable. Computation carried out thanks to a classical scheme with a time step $\Delta t < 5 \cdot 10^{-9}$ (Left) and the AP-scheme with a time step $\Delta t > 10^{-6}$ (Right).

FIGURE 7: Evolution of the tokamak temperature (T) simulated by the non linear anisotropic diffusion equation : $\partial_t T - \frac{1}{\varepsilon} \nabla_{||} \cdot (K_{||} T^{5/2} \nabla_{||} T) - \nabla_{\perp} \cdot (K_{\perp} \nabla_{\perp} T) = 0$, with $K_{||}$, K_{\perp} two constants and ∇_{\perp} the derivative along the magnetic field direction. Temperature and magnetic field lines as a function of the 2D space variable after 10^{-2} s. for $\varepsilon = 1$ (Left) and $\varepsilon = 10^{-15}$ (Right), with an isotrop gaussian as initial data.

References

[BDD, CICP] S. Brull, P. Degond, F. Deluzet, *Degenerate anisotropic elliptic problems and magnetized plasma simulations*, Communications in Computational Physics (CICP), 11 (2012), pp147–178.

[BDDM, KRM] S. Brull, P. Degond, F. Deluzet, A. Mouton, *Asymptotic-Preserving scheme for a bi-fluid Euler-Lorentz model*, to appear in Kinetic and Related Models

[BDM] S. Brull, F. Deluzet, A. Mouton *Numerical resolution of an anisotropic non-linear diffusion problem*, in preparation.

[Degond] P. Degond, Asymptotic-Preserving Schemes for Fluid Models of Plasmas, submitted.

[DDLNN, CMS] P. Degond, F. Deluzet, A. Lozinski, J. Narski, C. Negulescu, *Duality-based Asymptotic-Preserving method for highly anisotropic diffusion equations*, to appear in Communications in Mathematical Sciences.

[DDN, SIAM10] P. Degond, F. Deluzet, C. Negulescu, *An Asymptotic-Preserving scheme for strongly anisotropic problems*, Multiscale Model. Simul., 8 (2010), pp. 645–666.

[DDSV, JCP2009] P. Degond, F. Deluzet, A. Sangam, M-H. Vignal, *An asymptotic preserving scheme for the Euler equations in a strong magnetic field*, J. Comput. Phys., 228 (2009), pp. 3540-3558.

[DHV] P. Degond, S. Hirstoaga, M-H. Vignal, *The Vlasov model under large magnetic fields in the low-Mach number regime*, submitted.

[DLNN] P. Degond, A. Lozinski, J. Narski, C. Negulescu, *An Asymptotic-Preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition*, submitted.

[MN] A. Mentrelli, C. Negulescu, *Asymptotic-Preserving scheme for highly anisotropic non-linear dif*fusion equations, submitted.

Acknowledgments

