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beginning of 2000’s, push to develop

nanotechnologies:
= Critical mass of researchers
= High quality education programs
=  World class infrastructure
= |ndustrial sector involvement

NanoQuébec created in 2001

by MDEIE, Quebec’s department of economic development,
innovation and trade

Mission
to strengthen nanotechnology-enabled innovation with the aim of
maximizing economic impact
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High quality research programs

In 2001, founding universities committed to recruiting 54 additional

professors in nanotechnology.
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High quality research infrastructure

Universities coordinated to strengthen nanotechnology infrastructure:
micro/nanofabrication, synthesis and nanomaterial characterization

/2001 I a 2010

Infrastructure not up to NQ : Mobilisation 400 MS in equipment and
a world class research
standards )
(29 research infrastructure
. CFlawards (over 180 research
professionals) :
professionals)
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Challenge

Translating research capacity into industrial leadership

Leadership
Industriel

Mesures de transfert
technologique et innovation

Développement et structuration
des capacités de recherche




NanoQuébec today - 2 key initiatives

The Quebec Nanotechnology

Infrastructure - QNI

INFRASTRUCTURE QUEBECOISEEN ez o= -
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supporting university-based
R&D infrastructures
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iNano funding program

fostering R&D collaborations
between university and industry



NanoQuebec funds 11 university-based laboratories :
= 300 MS equipment

= NanoQuébec money 2010-2013: 14 MS total with 9 MS to support
lab operations

70% is manpower, HQP to run labs

QNI regroups those 11 laboratories for a one-stop-shop

The QNI is...
= Opened to both academic and industrial users
= World class in :
Micro-nanofabrication
Nanomaterial synthesis
Characterization and modelling
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Technical offer

Micro-nanofabrication

Nanomaterial synthesis

Graveur ICP-DRIE

One-stop-shop for access wide

range of expertise

- v

Cryo-TEM

WWW.ign-gni.ca
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FEG-SEM ‘-L

Characterization et modling



http://www.iqn-qni.ca/
http://www.iqn-qni.ca/
http://www.iqn-qni.ca/

Expertise

Health sciences
New material synthesis

Blommerahsatlon
200 nm

Synthese’de canaux ioniques
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I-Nano

= New way to promote university-industry collaborations
= Compagnies post ‘challenges’ to the research community
= Researchers suggest ‘solutions’

= Relate challenge-solution, in 4 weeks:
= 57 challenges, 150 solutions
= 57% of companies applying had less than 50 employees
= 20 projects were submitted for funding (6 MS total)
= 40% NQ - 30% NSERC-DRC - 30% company (15% inkind)

I o I Matural Sciences and Engineering  Consail de racherches en sciences
- Research Council of Canada naturelles et en genie du Canada

nano www.nanoquebec.ca/ I-Nano
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I-Nano - some examples of challenges

—
.

New polymers for advanced photolithography
Nanoscale electronic structures adapted to textile and garment
integration

. Transparent electrodes for photovoltaics applications

Integration of Nanostructured Synthesized Elements for high efficient
Sensors

Synthesis and development of UltraNanoCrystalline Diamond for sensing
applications

Modeling of high power batteries/capacitors for energy recovery

Impact of nanomaterials on health and environment

Volume Production of Optical MEMS Devices

Development of cGMP production processes and QC analytical procedures
for chitosan/nucleic acid nanoparticles

. Color maintenance in textile

. Self-repair paints

. Surface protection against ice and graffiti

. Development of an intelligent fiber that has the capabilities to detect the

presence of blood in a wounded person

. Improving performance of epoxy based semiconductor packaging

nano
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Creation of spin offs from university research
Canétique from INRS-EMT

Research into fuel cells by Prof. JP Dodelet

Following breakthgoughs published in Science in 2009 and Nature Comm in 2011:

M. Lefevre, et al., Iron-based catalysts with improved oxygen reduction activity in

polymer electrolyte fuel cells, Science, 324, 71-71 (2009)

= E. Proietti, et al., Iron-based cathode catalyst with enhanced power density in polymer

electrolyte membrane fuel cells, Nature Communications, 2 : 416, DOl :10.1038
/ncomms1427.

nano
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Vanadium dioxide VO,

Monoclinic

Tetragonal
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» Large variation in the electrical and optical properues aue o the metal-to-insulator
transition.

» Transition temperature (T,,;) close to room temperature.
» The transition temperature can be modified through doping.
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Vanadium dioxide VO,

Transition control methods Applications of VO,

> Temperature » IR uncooled bolometer
> Photo-excitation » Field effect transistors
> Electric field » Ultrafast infrared shutters
> Pressure » Modulators
» Holographic storage system
Control of the transition > Microwave switching applications
temperature » Smart windows
» Smart Radiator Devices (SRD) for
» Donorlike or acceptorlike centers: spacecraft
» W, Ti, Al,...etc % Sensors
> ..

nano
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Effects of W and Ti-W codoping on VO, phase transition
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» The transition temperature (Tt) is about 36 °C for W-doped VO, as compared to 68
°C for VO, films, T, is then lowered by about 23°C per one at. % of W dopant ions

added

» T,is about 60 °C for Ti-W codoped VO, films,

» The optical hysteresis is completely suppressed in Ti-W-codoped VO, films.

nano



VO, : smart radiator device

» Spacecrafts are subjected to large external
temperature swings (—150/ +150°C)

» Internal temperature must be regulated over -10 to
30°C

» Efficient thermal control of spacecraft is crucial for
spacecraft missions to succeed.

Problems associated with the current thermal-control
systems:

Ry 4 - » Cost, complexity, size, weight, and the risk of damage of
) . the mechanic and/or the power supply systems.

New approach for the thermal-control systems: Smart radiator device (SRD)

» Development of VO,-based variable emittance coatings

Advantages of the smart radiator device:

» Cost-effective, simple, lightweight, and can be directly integrated onto the spacecraft
parts

» Passive

nano
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VO, : smart radiator device

SRD requirements:

High temperature Emissivity (e-high) > 0.7
Low temperature Emissivity (e-low) <0.5
Tunability (Delta Emissivity, Ag) > 0.35
Switching temperature around 20°C

Solar absorbance EOF (a-EOF) <0.3

The optimal performance of SRD should be obtained over a large surface area
(>3” in diameter)

VV VYV VY

Methodology

» Optimization of the VO, properties

» Simulation

» Fabrication

» Emittance characterization (from FTIR reflectance measurements)

nano
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Reflectance

Reflectance

VO, : smart radiator device
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VO, : smart radiator device
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Conclusion

Many cooperation opportunities
www.hanoquebec.ca

Merci

nano

21



‘nano
queéenec

INFRASTRUCTURE QUEBECOISE EN
NANOTECHNOLOGIE o :

22




