NanoQuébec: Québec network in nanotechnologies

Mohamed Chaker

Professor, INRS-EMT
Chair of the scientific affairs of NanoQuébec
Tier I Canada Research Chair in
Plasmas applied to micro and nanomanufacturing technologies

STAE's second fall meeting November 14, 2012, Toulouse

The first 10 years of NanoQuébec

beginning of 2000's, push to develop nanotechnologies:

- Critical mass of researchers
- High quality education programs
- World class infrastructure
- Industrial sector involvement

NanoQuébec created in 2001

by MDEIE, Quebec's department of economic development, innovation and trade

Mission

to strengthen nanotechnology-enabled innovation with the aim of maximizing economic impact

High quality research programs

In 2001, founding universities committed to recruiting 54 additional professors in nanotechnology.

High quality research infrastructure

Universities coordinated to strengthen nanotechnology infrastructure: micro/nanofabrication, synthesis and nanomaterial characterization

2001

Infrastructure not up to standards (29 research professionals)

NQ: Mobilisation

CFI awards

2010

400 M\$ in equipment and a world class research infrastructure (over 180 research professionals)

Challenge

Translating research capacity into industrial leadership

Leadership Industriel

Mesures de transfert technologique et innovation

Développement et structuration des capacités de recherche

2000 2015

NanoQuébec today - 2 key initiatives

The Quebec Nanotechnology Infrastructure - QNI

iNano funding program

supporting university-based R&D infrastructures

fostering R&D collaborations between university and industry

Nanotechnology infrastructure in Quebec

NanoQuebec funds 11 university-based laboratories:

- 300 M\$ equipment
- NanoQuébec money 2010-2013: 14 M\$ total with 9 M\$ to support lab operations

70% is manpower, HQP to run labs

QNI regroups those 11 laboratories for a one-stop-shop

The QNI is...

- Opened to both academic and industrial users
- World class in :

Micro-nanofabrication
Nanomaterial synthesis
Characterization and modelling

Technical offer

Nanomaterial synthesis

Micro-nanofabrication

One-stop-shop for access wide range of expertise www.iqn-qni.ca

Characterization et modelling

Expertise

New material synthesis

Health sciences

Microsystems

- New way to promote university-industry collaborations
- Compagnies post 'challenges' to the research community
- Researchers suggest 'solutions'
- Relate challenge-solution, in 4 weeks:
 - 57 challenges, 150 solutions
 - 57% of companies applying had less than 50 employees
 - 20 projects were submitted for funding (6 M\$ total)
 - 40% NQ 30% NSERC-DRC 30% company (15% inkind)

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

I-Nano - some examples of challenges

- 1. New polymers for advanced photolithography
- 2. Nanoscale electronic structures adapted to textile and garment integration
- 3. Transparent electrodes for photovoltaics applications
- 4. Integration of Nanostructured Synthesized Elements for high efficient Sensors
- 5. Synthesis and development of UltraNanoCrystalline Diamond for sensing applications
- 6. Modeling of high power batteries/capacitors for energy recovery
- 7. Impact of nanomaterials on health and environment
- 8. Volume Production of Optical MEMS Devices
- 9. Development of cGMP production processes and QC analytical procedures for chitosan/nucleic acid nanoparticles
- 10. Color maintenance in textile
- 11. Self-repair paints
- 12. Surface protection against ice and graffiti
- 13. Development of an intelligent fiber that has the capabilities to detect the presence of blood in a wounded person
- 14. Improving performance of epoxy based semiconductor packaging

10 défis provenant du secteur aéronautique

R&D 2011

Creation of spin offs from university research

Canétique from INRS-ÉMT

Research into fuel cells by Prof. JP Dodelet

Following breakthgoughs published in **Science** in 2009 and **Nature Comm** in 2011:

- M. Lefèvre, et al., Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells, Science, 324, 71-71 (2009)
- E. Proietti, et al., Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells, Nature Communications, 2: 416, DOI:10.1038/ncomms1427.

Vanadium dioxide VO₂

- > Large variation in the electrical and optical properties due to the metal-to-insulator transition.
- \triangleright Transition temperature (T_{MIT}) close to room temperature.
- > The transition temperature can be modified through doping.

Vanadium dioxide VO₂

Transition control methods

- Temperature
- Photo-excitation
- Electric field
- Pressure

Control of the transition temperature

- Donorlike or acceptorlike centers:
- ➤ W, Ti, Al,...etc

Applications of VO₂

- > IR uncooled bolometer
- > Field effect transistors
- Ultrafast infrared shutters
- Modulators
- Holographic storage system
- Microwave switching applications
- Smart windows
- Smart Radiator Devices (SRD) for spacecraft
- Sensors
- **>** ...

Effects of W and Ti-W codoping on VO₂ phase transition

- The transition temperature (Tt) is about 36 °C for W-doped VO₂ as compared to 68 °C for VO₂ films, T_t is then lowered by about 23°C per one at. % of W dopant ions added
- ➤ T_t is about 60 °C for Ti-W codoped VO₂ films,
- The optical hysteresis is completely suppressed in Ti-W-codoped VO₂ films.

- Spacecrafts are subjected to large external temperature swings (-150/ +150°C)
- Internal temperature must be regulated over -10 to 30°C
- Efficient thermal control of spacecraft is crucial for spacecraft missions to succeed.

Problems associated with the current thermal-control systems:

➤ Cost, complexity, size, weight, and the risk of damage of the mechanic and/or the power supply systems.

New approach for the thermal-control systems: Smart radiator device (SRD)

Development of VO₂-based variable emittance coatings

Advantages of the smart radiator device:

- Cost-effective, simple, lightweight, and can be directly integrated onto the spacecraft parts
- Passive

SRD requirements:

- \triangleright High temperature Emissivity (ε-high) > 0.7
- \triangleright Low temperature Emissivity (ε-low) ≤0.5
- \triangleright Tunability (Delta Emissivity, Δ ε) ≥ 0.35
- Switching temperature around 20°C
- > Solar absorbance EOF (α -EOF) < 0.3
- The optimal performance of SRD should be obtained over a large surface area (>3" in diameter)

Methodology

- Optimization of the VO₂ properties
- Simulation
- Fabrication
- Emittance characterization (from FTIR reflectance measurements)

Stability of the radiator performance after thermal cycling tests (250 cycles between -20°C and 100°C)

Many cooperation opportunities www.nanoquebec.ca Merci

