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Meta or hypermotivation
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More realistic/mathematical motivation

Solve control, optimization, and/or optimal design problems
involving solutions of Partial Differential Equations (as the
main models of Continuum Mechanics) when solutions involve
singularities.

Classical intuition and/or “smooth calculus” fails....
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Continuous versus discrete

Two approaches:

Continuous: PDE+ Optimal shape design → implement that
numerically.

Discrete: Replace PDE and optimal design problem by
discrete version → Apply discrete tools

Do these processes lead to the same result?

OPTIMAL DESIGN + NUMERICS
=

NUMERICS + OPTIMAL DESIGN?
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NO!!!!!!

E. Z., SIAM Review, 47 (2) (2005), 197-243.
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Discrete: Discretization + gradient

Advantages: Discrete clouds of values. No shocks. Automatic
differentiation, ...

Drawbacks:
”Invisible” geometry.

Scheme dependent.

Continuous: Continuous gradient + discretization.

Advantages: “Simpler” formal computations. Solver
independent. Shock detection.

Drawbacks:
Yields approximate gradients.
Subtle if shocks.
Hard to justify analytically. The one million dollar problem!
http://www.claymath.org/millennium/Navier-Stokes Equations/
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The idea: Alternating descent algorithms.

Steepest descent:

uk+1 = uk − ρ∇J(uk).

Discrete version of continuous gradient systems

u′(τ) = −∇J(u(τ)).

Enrique Zuazua Flow control in the presence of shocks



Motivation Motivation revisited Continuous versus discrete The Burgers equation Shocks & Alternating descent algorithms Other applications

Enrique Zuazua Flow control in the presence of shocks



Motivation Motivation revisited Continuous versus discrete The Burgers equation Shocks & Alternating descent algorithms Other applications

What if the u is vector valued ? u = (x , y) and J = J(x , y).
Alternating descent:

uk+1/2 = uk − ρJx(uk); uk+1 = uk+1/2 − ρJy (uk).

Motivation:
x and y represent physical variables of different nature.
Multiphysics problems.
Splitting the gradient into Jx and Jy may help on capturing
the anisotropy of the graph.
Functionals J that are non-smooth with respect to some of the
variables.

Question: What’s the continuous analog? Does it correspond
to a class of dynamical systems for which the stability is
understood?
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Inspired on domain decomposition techniques (Karl Hermann
Amandus Schwarz (1843 – 1921)) and Marius Sophus Lie ( 1842 –
1899):

exp(A + B) = lim
n→∞

[
exp(A/n) exp(B/n)

]n
.
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These kind of algorithms are used (without may be stating them
that way) in various contexts. For instance in optimal design in
elasticity where shape and topological derivatives are combined:

G. Allaire’s web page, Ecole Polytechnique.
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In this case there is one single physics but two control or
design parameters: external shape and inner topology.

In some cases the possible presence of two distinguished
physics and/or control parameters is not completely obvious.
Part of the game is to identify the appropriate x and y !
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The 1− d model: Burgers equation

J. M. Burgers, Application of a model system to illustrate
some points of the statistical theory of free turbulence, Proc.
Konink. Nederl. Akad. Wetensch. 43, 2 – 12 (1940).

E. Hopf, The partial dfferential equation ut + uux = uxx ,
Comm. Pure Appl. Math. 3, 201 –230 (1950).

J. D. Cole, On a quasi-linear parabolic equation occurring in
aerodynamics, Quart. Appl. Math. 9, 225 – 236 (1951).

Celebrated because:

It has the same scales as the Navier-Stokes equations

ut − µ∆u + u · ∇u = ∇p.

There is a change of variable reducing the problem to the
linear heat equation. This leads to explicit solutions.

One can show explicitly the presence of shocks.
G.B. Whitham, Linear and nonlinear waves, New York,
Wiley-Interscience, 1974.
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Viscous version:

∂u

∂t
− ν ∂

2u

∂x2
+ u

∂u

∂x
= 0.

Inviscid one:
∂u

∂t
+ u

∂u

∂x
= 0.
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Solutions may develop shocks or quasi-shock configurations.

For shock solutions, classical calculus fails: The derivative of a
discontinuous function is a Dirac delta;

For quasi-shock solutions the sensitivity (gradient) is so large
that classical sensitivity calculus is meaningless.
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Solution as a pair: flow+shock variables

Then the pair (u, ϕ)= (flow solution, shock location) solves:
∂tu + ∂x(

u2

2
) = 0, in Q− ∪ Q+,

ϕ′(t)[u]ϕ(t) =
[
u2/2

]
ϕ(t)

, t ∈ (0,T ),

ϕ(0) = ϕ0,

u(x , 0) = u0(x), in {x < ϕ0} ∪ {x > ϕ0}.
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The Rankine–Hugoniot equation

ϕ′(t)[u]ϕ(t) =
[
u2/2

]
ϕ(t)

governs the behaviour of shock waves normal to the oncoming
flow.

Rankine, W. J. M. , On the thermodynamic theory of waves
of finite longitudinal disturbances, Phil. Trans. Roy. Soc.
London, 160, (1870).

Hugoniot, H., Propagation des Mouvements dans les Corps et
spcialement dans les Gaz Parfaits, Journal de l’Ecole
Polytechnique, 57, (1887); 58, (1889).
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A new viewpoint: Solution = Solution + shock location. Then the
pair (u, ϕ) solves:

∂tu + ∂x(
u2

2
) = 0, in Q− ∪ Q+,

ϕ′(t)[u]ϕ(t) =
[
u2/2

]
ϕ(t)

, t ∈ (0,T ),

ϕ(0) = ϕ0,

u(x , 0) = u0(x), in {x < ϕ0} ∪ {x > ϕ0}.
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In the inviscid case, the simple and “natural” rule

∂u

∂t
+ u

∂u

∂x
= 0→ ∂δu

∂t
+ δu

∂u

∂x
+ u

∂δu

∂x
= 0

breaks down in the presence of shocks

δu = discontinuous, ∂u
∂x = Dirac delta ⇒ δu ∂u

∂x ????

The difficulty may be overcame with a suitable notion of measure
valued weak solution using Volpert’s definition of conservative
products and duality theory (Bouchut-James, Godlewski-Raviart,...)
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The corresponding linearized system is:

∂tδu + ∂x(uδu) = 0, in Q− ∪ Q+,

δϕ′(t)[u]ϕ(t) + δϕ(t)
(
ϕ′(t)[ux ]ϕ(t) − [uxu]ϕ(t)

)
+ϕ′(t)[δu]ϕ(t) − [uδu]ϕ(t) = 0, in (0,T ),

δu(x , 0) = δu0, in {x < ϕ0} ∪ {x > ϕ0},
δϕ(0) = δϕ0,

Majda (1983), Bressan-Marson (1995), Godlewski-Raviart (1999),
Bouchut-James (1998), Giles-Pierce (2001), Bardos-Pironneau
(2002), Ulbrich (2003), ...
None seems to provide a clear-cut recipe about how to proceed
within an optimization loop.
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SHOCKS: A MUST

Discrete approach: You do not see them

Continuous approach: They make life difficult
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A new method

A new method: Splitting + alternating descent algorithm.
C. Castro, F. Palacios, E. Z., M3AS, 2008.
Ingredients:

The shock location is part of the state.

State = Solution as a function + Geometric location of
shocks.

Alternate within the descent algorithm:

Shock location and smooth pieces of solutions should be
treated differently;
When dealing with smooth pieces most methods provide
similar results;
Shocks should be handeled by geometric tools, not only those
based on the analytical solving of equations.

Lots to be done: Pattern detection, image processing,
computational geometry,... to locate, deform shock locations,....
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An example: Inverse design of initial data

Consider

J(u0) =
1

2

∫ ∞
−∞
|u(x ,T )− ud(x)|2dx .

ud = step function.
Gateaux derivative:

δJ =

∫
{x<ϕ0}∪{x>ϕ0}

p(x , 0)δu0(x) dx + q(0)[u]ϕ0δϕ0,

(p, q) = adjoint state

−∂tp − u∂xp = 0, in Q− ∪ Q+,
[p]Σ = 0,
q(t) = p(ϕ(t), t), in t ∈ (0,T )
q′(t) = 0, in t ∈ (0,T )
p(x ,T ) = u(x ,T )− ud , in {x < ϕ(T )} ∪ {x > ϕ(T )}

q(T ) =
1
2 [(u(x ,T )−ud )2]

ϕ(T )

[u]ϕ(T )
.
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The gradient is twofold= variation of the profile + shock
location.

The adjoint system is the superposition of two systems =
Linearized adjoint transport equation on both sides of the
shock + Dirichlet boundary condition along the shock that
propagates along characteristics and fills all the region not
covered by the adjoint equations.
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State u and adjoint state p when u develops a shock:
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The discrete aproach

Recall the continuous functional

J(u0) =
1

2

∫ ∞
−∞
|u(x ,T )− ud(x)|2dx .

The discrete version:

J∆(u0
∆) =

∆x

2

∞∑
j=−∞

(uN+1
j − ud

j )2,

where u∆ = {uk
j } solves the 3-point conservative numerical

approximation scheme:

un+1
j = un

j − λ
(
gn
j+1/2 − gn

j−1/2

)
= 0, λ =

∆t

∆x
,

where, g is the numerical flux

gn
j+1/2 = g(un

j , u
n
j+1), g(u, u) = u2/2.
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Examples of numerical fluxes

gLF (u, v) =
u2 + v2

4
− v − u

2λ
,

gEO(u, v) =
u(u + |u|)

4
+

v(v − |v |)
4

,

gG (u, v) =

{
minw∈[u,v ] w

2/2, if u ≤ v ,
maxw∈[u,v ] w

2/2, if u ≥ v ,

Enrique Zuazua Flow control in the presence of shocks



Motivation Motivation revisited Continuous versus discrete The Burgers equation Shocks & Alternating descent algorithms Other applications

The Γ-convergence of discrete minimizers towards continuous ones
is guaranteed for the schemes satisfying the so called one-sided
Lipschitz condition (OSLC):

un
j+1 − un

j

∆x
≤ 1

n∆t
,

which is the discrete version of the Oleinick condition for the
solutions of the continuous Burgers equations

ux ≤
1

t
,

which excludes non-admissible shocks and provides the needed
compactness of families of bounded solutions.
As proved by Brenier-Osher, 1 Godunov’s, Lax-Friedfrichs and
Engquits-Osher schemes fulfil the OSLC condition.

1Brenier, Y. and Osher, S. The Discrete One-Sided Lipschitz Condition for
Convex Scalar Conservation Laws, SIAM Journal on Numerical Analysis, 25 (1)
(1988), 8-23.
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A new method: splitting+alternating descent

Generalized tangent vectors (δu0, δϕ0) ∈ Tu0 s. t.

δϕ0 =

(∫ ϕ0

x−
δu0 +

∫ x+

ϕ0

δu0

)/
[u]ϕ0 .

do not move the shock δϕ(T ) = 0 and

δJ =

∫
{x<x−}∪{x>x+}

p(x , 0)δu0(x) dx ,{
−∂tp − u∂xp = 0, in Q̂− ∪ Q̂+,
p(x ,T ) = u(x ,T )− ud , in {x < ϕ(T )} ∪ {x > ϕ(T )}.

For those descent directions the adjoint state can be computed by
“any numerical scheme”!
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Analogously, if δu0 = 0, the profile of the solution does not
change, δu(x ,T ) = 0 and

δJ = −
[

(u(x ,T )− ud(x))2

2

]
ϕ(T )

[u0]ϕ0

[u(·,T )]ϕ(T )
δϕ0.

This formula indicates whether the descent shock variation is
left or right!

WE PROPOSE AN ALTERNATING STRATEGY
FOR DESCENT

In each iteration of the descent algorithm do two steps:

Step 1: Use variations that only care about the shock location

Step 2: Use variations that do not move the shock and only
affect the shape away from it.
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Splitting+Alternating wins!
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Why?

Sol y sombra!

Enrique Zuazua Flow control in the presence of shocks



Motivation Motivation revisited Continuous versus discrete The Burgers equation Shocks & Alternating descent algorithms Other applications

Results obtained applying Engquist-Osher’s scheme and the one
based on the complete adjoint system

Splitting+Alternating method.
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Numerical schemes replace shocks by oscillations.

The oscillations of the numerical solution introduce
oscillations on the approximation of the functional J:
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Splitting+alternating is more efficient:

It is faster.

It does not increase the complexity.

Rather independent of the numerical scheme.

Extending these ideas and methods to more realistic
multi-dimensional problems is a work in progress and much
remains to be done.
Numerical schemes for PDE + shock detection + shape, shock
deformation + mesh adaptation,... Works by F. Lauzet (INRIA).
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Influence of shock wave location (Drag Minimization).
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Viscous models

Adjoint solutions for different viscous values of the viscosity
parameter: ν = 0.5 (upper left), ν = 0.1 (upper right) and

ν = 0.01 (lower left) and the exact adjoint solution (lower right).

Enrique Zuazua Flow control in the presence of shocks



Motivation Motivation revisited Continuous versus discrete The Burgers equation Shocks & Alternating descent algorithms Other applications

Flux identification.

{
∂tu + ∂x(f (u)) = 0, in R× (0,T ),
u(x , 0) = u0(x), x ∈ R.

This time the control is the nonlinearity f . It is actually an inverse
problem.

F. James and M. Sepúlveda, Convergence results for the flux
identification in a scalar conservation law. SIAM J. Control
Optim. 37(3) (1999) 869-891.

C. Castro and E. Zuazua, Flux identification for 1-d scalar
conservation laws in the presence of shocks, preprint, 2009.
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