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Sparse Optimization: Motivation

Look for simple approximate solution of optimization problem, rather than
a (more complex) exact solution.

Occam’s Razor: Simple explanations of the observations are
preferable to complex explanations.

Noisy data doesn’t justify solving the problem exactly.

Simple / structured solutions are sometimes more robust to data
inexactness.

Often easier to actuate / implement / store / explain simple solutions.

May conform better to prior knowledge.

When the solution is represented in an appropriate basis, simplicity or
structure may show up as sparsity in x (i.e. few nonzero components).

Sparse optimization does not (necessarily) involve sparse linear algebra!
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Example: Compressed Sensing

Given k × n matrix A and observation vector y , find sparse x with

Ax ≈ y .

We can reconstruct x from A and y , even when k � n and when noise is
present in y , provided:

We know that x is sparse (or nearly so);

There are enough observations k, relative to sparsity of x ;

A satisfies restricted isometry properties (RIP) that ensure that for all
sparse vectors x1 and x2, we have ‖A(x1 − x2)‖2 ≈ ‖x1 − x2‖2.

If A is a projection from Rn onto a random k-dimensional subspace, it will
have such properties. (Johnson-Lindenstrauss)

Reconstruction: Given A and y , and possibly some knowledge of sparsity
level and noise type, recover x .

Stephen Wright (UW-Madison) Sparse Optimization Methods Toulouse, February 2009 4 / 58



There are 204 spikes out of 4096 entries.

Conventional signal processing indicates that you would need at least
4096 measurements (e.g. an FFT, a component-by-component
sample) to determine x .
Using compressed sensing, it can be reconstructed exactly from 1000
random linear combinations of the components of x .
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Example: Image Processing

Image Denoising: Given a rectangular array of pixel intensities f = [fij ],
i , j = 1, 2, . . . ,N, find a “denoised” array u = [uij ] that is close to f but
has smaller total variation (more cartoon-like).

Formulate as a data-fitting problem with a regularization term that
penalizes the discrete spatial gradient of u:

min
u

P(u) :=
λ

2
‖u − f ‖22 +

∑
i ,j

∥∥∥∥[
ui+1,j − ui ,j

ui ,j+1 − ui ,j

]∥∥∥∥
2

Tends to filter out random noise in pixels of f . As λ increases, u is closer
to the measured image f .
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Figure: CAMERAMAN: original (left) and noisy (right)
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Figure: Denoised CAMERAMAN: Tol=10−2 (left) and Tol=10−4 (right).
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Example: Matrix Completion

Seek low-rank matrix X ∈ Rn1×n2 such that Xij ≈ Mij for (i , j) ∈ Ω, where

Ω is a set of index pairs in {1, 2, . . . , n1} × {1, 2, . . . , n2};
Mij are given observations.

Example: Netflix Prize, Covariance Estimation.

More general variant: Seek low-rank X such that A(X ) ≈ b, where A is a
linear mapping on elements of X and b is the vector of observations.

In some sense, extends compressed sensing to matrix variables.

“Simplicity” ∼ “low rank” rather than sparsity.

Many algorithmic ideas extend, and new ones arise.

Linear algebra issues are more complicated and more central.
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Example: Tensor Decompositions

Given an N-dimensional tensor X , the CP decomposition expresses X
approximately as an outer product of F rank-1 tensors:

Xi1,i2,...,iN ≈
F∑

f =1

a
(1)
i1,f

a
(2)
i2,f

. . . a
(N)
iN ,f .

Rank of a tensor is the smallest F for which exact equality holds. However
things are much more complicated than in the matrix case (N = 2):

F may be different over R and C.

Finding F is NP-hard.

Maximum and typical ranks of random tensors may be different.

Minimum-rank decompositions are nonunique for matrices, but often
unique for tensors.

Can have a sequence of rank-F tensors approaching a rank-(F + 1)
tensor.

There is interest in solving “tensor completion” problems where we find a
rank-F tensor that closely approximates the observations in a given tensor.
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Example: Radiotherapy for Cancer

Deliver radiation from an external device to an internal tumor.

Shape radiation beam, choose angles of delivery so as to deliver
prescribed radiation dose to tumor while avoiding dose to surrounding
tissue and organs.

Use just a few different beam shapes and angles, to simplify the
treatment, avoid spending too much time on the device, hopefully
reduce the likelihood of treatment errors.
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Linear accelerator, showing cone and collimators
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Multileaf collimator. Leaves move up and down to shape the beam.
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Class of Examples: Extracting Information from Data

We are drowning in data!

Key challenge: Extract salient information from large data sets
efficiently.

What’s “Salient”

Main effects — the essence — not minor effects that possibly overfit
the observations
The main effects are sometimes complex combinations of the basic
ones — that is, we are looking for a small number from a potentially
huge set — needle in a haystack.
The problem is sparse, by our definition.

A few specific instances follow...
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Example: Support Vector Machines (Linear)
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Have attribute vectors x1, x2, . . . , xm (real vectors) and labels
y1, y2, . . . , ym (binary ±1).

Seek a hyperplane wT x − b defined by (w , b) that separates the
points according to their classification:

wT xi − b >= 1⇒ yi = 1, wT xi − b <= −1⇒ yi = −1

(for most i).

Obtain (w , b) from a function that penalizes incorrect classifications
with a loss function, and also keeps ‖w‖2 small:

min
(w ,b)

λ

2
wTw +

m∑
i=1

max
(
1− yi [w

T xi − b], 0
)

.

Dual formulation:

max
α

eTα− 1

2
αTY TKY α subject to αT y = 0, 0 ≤ α ≤ C1,

where y = (y1, y2, . . . , ym)T , Y = diag(y), Kij = xT
i xj is the kernel.
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Example: Support Vector Machines (Nonlinear)
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When a hyperplane is inadequate for separating the vectors, can find a
nonlinear classifier by mapping the xi into a higher-dimensional space (via
a function φ : Rn → H) and doing linear classification there. When the
hyperplane is projected into the original space, it gives a nonlinear surface.

Don’t need to define φ explicitly! Instead define the kernel function k(s, t)
to be a measure of closeness of s and t. Implicitly, k(s, t) = 〈φ(s), φ(t)〉.

Can define the dual SVM optimization problem and the classifier function
in terms of k alone — no need for φ.

max
α

eTα− 1

2
αTY TKY α subject to αT y = 0, 0 ≤ α ≤ (1/λ)1,

where Kij = k(xi , xj) is the kernel. (Can get a primal formulation too.)

Where does sparsity come in? Can formulate approximate versions of these
problems in which few of the α are allowed to be nonzero. (In fact, these
are more tractable when m is very large.)
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Example: Regularized Logistic Regression

Have attribute vectors x1, x2, . . . , xm (real vectors) and labels
y1, y2, . . . , ym (binary 0/1).

Instead of a classifier, want to construct a function p that will give the
probability of a given vector X having label Y = 1.

Model log odds or logit function as linear combination of basis functions
Bl(x), l = 1, 2, . . . ,N (N may be huge):

ln

(
p(x)

1− p(x)

)
=

N∑
l=0

alBl(x),

Define a log-likelihood function (of the coefficients a1, a2, . . . , aN):

1

m

m∑
i=1

[yi log p(xi ) + (1− yi ) log(1− p(xi ))] .

Choose coefficients (a1, a2, . . . , aN) sparsely to approximately maximize
this function.
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Example: Regularized Regression

(Lasso: Tibshirani, 1997) Want to find a sparse least-squares solution to
an overdetermined problem Ax ≈ b. Solve:

min
x
‖Ax − b‖22 s.t. ‖x‖1 ≤ T

for some parameter T > 0. In fact, can trace the solution x as a function
of T . Generally higher T leads to less sparse x .

Can extend to group lasso, where x is broken into disjoint subvectors x[l ],
l = 1, 2, . . . ,K , and we impose the constraint:

K∑
l=1

‖x[l ]‖∞ ≤ T or
K∑

l=1

‖x[l ]‖2 ≤ T .

That is, each subvector x[l ] is “turned on or off” as a group, not by
individual components, e.g. [Turlach, Venables, Wright, 2005].

Can also have non-disjoint subvectors, i.e. when the components are
arranged in a tree (e.g. wavelet coefficients), sometimes wish to turn
subtrees on and off, not individual nodes.
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Formulating Sparse Optimization Problems

Two basic ingredients:

An underlying optimization problem — often of data-fitting or
max-likelihood type

Regularization term or constraints or imposed structure to encourage
sparsity / structure — usually nonsmooth.

Usually large, computationally demanding. Need techniques from

Large-scale optimization

Nonsmooth optimization

Conic programming

Computational linear algebra

Statistics

Heuristics

Also a lot of domain-specific knowledge.
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Nonsmooth Norms are Useful!

Consider first a scalar function f : R→ R. Want to find x that
approximately minimizes f , but accept 0 as an approximate solution
provided it’s not too far off.

One approach is to add the nonsmooth regularizer |x | with parameter
λ > 0, and solve

min
x

f (x) + λ|x |

First-order optimality conditions are 0 ∈ ∂f (x), where

∂f (x) =


f ′(x)− λ if x < 0

f ′(0) + λ[−1, 1] if x = 0

f ′(x) + λ if x > 0.

Introduces nonsmoothness at the kink x = 0, making it more “likely” that
0 will be chosen as the solution.

The “likelihood” increases as λ increases.
Stephen Wright (UW-Madison) Sparse Optimization Methods Toulouse, February 2009 24 / 58



Effect of λ

f(x)
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Effect of λ

f(x)+|x|
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Effect of λ

f(x)+2|x|
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Higher Dimensions

In higher dimensions, if we design nonsmooth functions c(x) that have
their “kinks” at points that are “sparse” according to our definition, then
they are suitable regularizers for our problem.

Examples:

c(x) = ‖x‖1 will tend to produce x with few nonzeros.

c(x) = ‖x‖1 is less interesting — kink only when all components are
zero (all or nothing).

c(x) = ‖x‖∞ has kinks where components of x are equal — also may
not be interesting for sparsity.

c(x) =
∑K

l=1 ‖x[l ]‖2 has kinks where x[l ] = 0 for some l – suitable for
group sparsity.

Total Variation norm: Has kinks where ui ,j = ui+1,j = ui ,j+1 for some
i , j , i.e. where spatial gradient is zero.
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Compressed Sensing

Ax ≈ y , A ∈ Rn×k , n� k.

Given sparsity level S ≤ k, A satisfies RIP with isometry constant δS < 1 if
for any column submatrix A·T of A with at most S columns, we have

(1− δS)‖c‖22 ≤ ‖A·T c‖22 ≤ (1 + δS)‖c‖22, for all c ∈ RS .

That is, each column submatrix with k columns is nearly orthonormal.

If δ2S is somewhat less than 1, then A can distinguish clearly between any
two vectors in Rn with sparsity level S or below.

Random matrices with good RIP include:

elements of A drawn i.i.d. from N(0, 1);

columns of A uniformly distributed on the unit sphere in Rk ;

row submatrix of discrete cosine transform.
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RIP and Tractability

A natural formulation for the recovery problem might be:

min ‖x‖0 s.t. ‖Ax − b‖2 ≤ ε,

where ε is related to expected noise in measurements. This is intractable
for general A.

However when RIP is good, greedy methods can succeed in recovering
sparse signals.

In addition, fundamental theory in compressed sensing [Candes, Romberg,
Tao 05], [Donoho 04] shows that when RIP or similar properties hold,
‖ · ‖1 can be used as a surrogate for ‖ · ‖0.

This observation leads to convex optimization formulations.
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Optimization Formulations of the Recovery Problem

LASSO with parameter β > 0:

min
1

2
‖Ax − y‖22 subject to ‖x‖1 ≤ β.

Reconstruction with noise bound ε:

min ‖x‖1 subject to ‖Ax − y‖2 ≤ ε.

Unconstrained nonsmooth formulation with regularization τ > 0.

min
1

2
‖Ax − y‖22 + τ‖x‖1.

By varying their parameters, all three formulations generally lead to the
same path of solutions.
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Algorithms

Interior-point:

Primal-dual: SparseLab / PDCO [Saunders et al 98, 02] l1 ls [Kim et
al 07]
SOCP: `1-magic [Candès, Romberg 05]

Gradient projection on QP formulation: GPSR [Figueiredo, Nowak,
Wright 07].

Pivoting / Homotopy a la LARS: SparseLab / SolveLasso

Iterative shrinking-thresholding / Forward-backward splitting /
Fixed-point: [Daubechies, Defriese, DeMol 04], [Combettes, Wajs 05],
FPC [Hale, Yin, Zhang 07], SpaRSA [Wright, Figueiredo, Nowak 08].

Augmented Lagrangian / Bregman [Yin et al 08] SALSA [Afonso et al
09]

Matching pursuit: OMP [Pati, Rezaiifar, Krishnaprasad 93] [Davis,
Mallat, Avellaneda 97], CoSaMP [Needell, Tropp 08].

Optimal first-order: [Nesterov 07], FISTA [Beck, Teboulle 08].
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Orthogonal Matching Pursuit (OMP)

q(x) :=
1

2
‖Ax − y‖22, ∇q(x) = AT r , where r := Ax − b.

OMP chooses elements of ∇q one at a time, allowing the corresponding
components of x to move away from 0 and adjust r accordingly.

Given A, y , set t = 1, r0 = 0, and Ω0 = ∅.
1 Define nt to be largest compoment of AT rt−1 and set

Ωt = Ωt−1 ∪ {nt};
2 Solve reduced least squares problem ut := minu ‖y − A·Ωtu‖22 and

define rt = y − A·Ωtut ;

3 Repeat until termination test satisfied.

Main costs per iteration are multiplications by A and AT .
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OMP and Descendants

OMP is fundamental, extremely simple, and cheap, but theoretical
guarantees are not too strong, and practical performance varies.

Can form the basis of more sophisticated algorithms (e.g. CoSaMP) that
have more complex strategies for updating Ωt and make bigger changes to
the reduced least-squares method at each iteration.

In all these methods, if RIP holds, the matrix A·Ωt is well conditioned
provided |Ωt | is not much bigger than the true sparsity of x .
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SpaRSA

min φ(x) :=
1

2
‖Ax − y‖22 + τ‖x‖1.

Define q(x) := (1/2)‖Ax − y‖22. From iterate xk , get step d by solving

min
d
∇q(xk)Td +

1

2
αkdTd + τ‖xk + d‖1.

Can view the αk term as an approximation to the Hessian:
αk I ≈ ∇2q = ATA. (When RIP holds, this approximation is good, for
small principal submatrices of AAT .)

Subproblem is trivial to solve in O(n) operations, since it is separable in
the components of d . Equivalent to the shrinkage operator:

min
z

1

2
‖z − uk‖22 +

τ

αk
‖z‖1, with uk := xk − 1

αk
∇q(xk).
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Choosing αk

By choosing αk greater than a threshold value ᾱ at every iteration,
can guarantee convergence, but slowly.

Can use a Barzilai-Borwein (BB) strategy: choose αk it to mimic the
true Hessian ATA over the step just taken. e.g. do a least squares fit
to:

[xk − xk−1] ≈ α−1
k [∇q(xk)−∇q(xk−1)].

Generally non-monotone.

Cyclic BB variants: e.g. update αk only every 3rd iteration.

Get monotone variants by backtracking: set αk ← 2αk repeatedly
until a decrease in objective is obtained.
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SpaRSA Implementation and Properties

Exploits warm starts well.

Problem is harder to solve for smaller τ (corresponding to more
nonzeros in x). Performance improved greatly by continuation:

Choose initial τ0 ≤ ‖AT y‖∞ and decreasing sequence
τ0 > τ1 > τ2 > . . . > τfinal > 0, where τfinal is the target final value.
Solve for τ equal to each element in sequence, using previous solution
as the warm start.

Debiasing: After convergence of the main algorithm, fix nonzero set
(support) in x and minimize ‖Ax − b‖22 over this reduced set.

Can make large changes to the active manifold on a single step (like
interior-point, unlike pivoting).

Each iteration is cheap: one multiplication each with A or AT

Stephen Wright (UW-Madison) Sparse Optimization Methods Toulouse, February 2009 35 / 58



Matrix Completion

Seek low-rank matrix X ∈ Rn1×n2 such that A(X ) ≈ b, where A is a linear
mapping on elements of X and b is the vector of observations.

In some sense, extends matrix completion is compressed sensing on matrix
variables. Linear algebra is more complicated.

Can formulate as
min
X

rank(X ) s.t. A(X ) = b

for exact observations, or

min
X

rank(X ) s.t. ‖A(X )− b‖ ≤ ε

for noisy observations.
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Matrix Completion Formulations

To get a convex optimization formulation, replace rank(X ) by its convex
envelope on the set {X | ‖X‖2 ≤ 1}, which is the nuclear norm ‖X‖∗
defined by

‖X‖∗ =

n2∑
i=1

σi (X ),

where σi (X ) is the ith singular value of X . This is a nonsmooth convex
function of X .

Obtain formulations

min
X
‖X‖∗ s.t. A(X ) = b (1)

and

min
X

τ‖X‖∗ +
1

2
‖A(X )− b‖22.
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Algorithms like SpaRSA

Obtain an extension of the SpaRSA approach by using αk I to approximate
A∗A. Obtain steps from the shrinkage operator by solving:

min
Z

τ

αk
‖Z‖∗ +

1

2
‖Z − Y k‖2F ,

where

Y k := X k − 1

αk
A∗(A(X k)− b).

e.g. [Ma, Goldfarb, Chen, 08]. Can prove convergence for αk sufficiently
large (uniformly greater than λmax(A∗A)/2).

Can enhance by similar strategies as in compressed sensing:

Continuation

Barzilai-Borwein αk , nonmonotonicity

Debiasing.
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Implementing Shrinking Methods

Main operation is the shrinkage operator:

min
Z

ν‖Z‖∗ +
1

2
‖Z − Y ‖2F ,

which can be solved via an SVD of Y . Calculate Y = UΣV T , then define
diagonal matrix Σ(ν) by

Σ(ν)ii = max(Σii − ν, 0),

and set Z = UΣ(ν)V T . Expensive for problems of interesting size.

Need for approximate SVD strategies.

possibly based on sampling;

possibly using Lanczos iterations;

possibly exploiting the fact that we often need only a few leading
singular values and vectors

See [Halko, Martinsson, Tropp 09] for a review of sampling-based
approximate factorizations.
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Explicit Parametrization of X

From [Recht, Fazel, Parrilo 07] and earlier work of Burer, Monteiro, Choi
in SDP setting.

Choose target rank r and approximate X by LRT , where L ∈ Rn1×r and
R ∈ Rn1×r are the unknowns in the problem. For the formulation:

min
X
‖X‖∗ s.t. A(X )− b,

we have the following equivalent formulation:

min
L,R

1

2

(
‖L‖2F + ‖R‖2F

)
s.t.A(LRT ) = b.

A nonconvex minimization problem. Local solutions can be found by e.g.
the method of multipliers [RFP 07], [Recht 08] using nonlinear conjugate
gradient (modified Polak-Ribière) for the subproblems.

Can perform exact line search with a quartic rootfinder [Burer, Choi 06].
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Explicit Parametrization: Noisy Formulation

min
L,R

τ
(
‖L‖2F + ‖R‖2F

)
+

1

2

∥∥∥A(LRT )− b
∥∥∥2

2
.

Again, can use nonlinear conjugate gradient with exact line search, and
can do continuation on τ .

No need for SVD. Implementations are easy.

Local minima? [Burer 06] shows that (in an SDP setting) provided r
is chosen large enough, the method should not converge to a local
solution — only the global solution.

Performance degrades when rank is overestimated, probably because
of degeneracy.

Investigations of this approach are ongoing.
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Summarizing: Tools Used for Matrix Completion

Formulation Tools:

Nuclear norm as a proxy for rank.
Lagrangian theory (equivalence of different formulations).
No local solutions, despite nonconvexity.

Optimization Tools:

Operator splitting (the basis of IST)
Gradient projection
(Optimal) gradient and subgradient methods
Augmented Lagrangian
Algorithms for large-scale nonlinear unconstrained problems (nonlinear
CG, L-BFGS)
Semidefinite programming
Handling of degeneracy

Linear Algebra Tools:

SVD
Approximate SVD via sampling
Lanczos
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Composite Minimization Framework

[Lewis, Wright 08] Develop a general algorithmic framework and
supporting theory, for extension of SpaRSA-like approaches to a much
wider class of problems.

min
x

h(c(x))

vector function c : Rn → Rm is smooth;

scalar function h : Rm → R usually nonsmooth.

In most of the analysis, we allow h to be

extended-valued (to enforce some constraints explicitly)

subdifferentially regularity or prox-regular.

Many applications have h convex — the analysis is much simpler in this
case.
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Examples

Compressed Sensing

min
x

1

2
‖Ax − b‖22 + λ‖x‖1

where A ∈ Rm×n with m� n. The second term induces sparsity in the
optimal x , generally more sparse as λ increases. Composite formulation
has m = n + 1 and

c(x) =

[
f (x)
x

]
, h(c) = c1 + τ‖c2:n+1‖1.

Regularized Logistic Regression and Group-Regularized Regression
problems can be framed similarly.
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`1 Penalty Function:

min f (x) s.t. r(x) ≤ 0, x ∈ C

`1 penalty is
min
x∈C

f (x) + τ‖r(x)+‖1

Set

c(x) =

f (x)
r(x)
x

 , h(c) = c1 + τ

nc+1∑
j=2

max(cj , 0) + δC(cnc+2:nc+n+1).

Nonlinear Approximation
min ‖c(x)‖,

where ‖ · ‖ is `1, `2, `∞, or Huber function, for example.
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Nonconvex Examples

Alternative to `1 regularization whre the penalty for large |xi | is attenuated:

min
x

f (x) + λ|x |∗, where |x |∗ =
n∑

i=1

(1− e−α|x |i ),

for some α > 0. [Mangasarian, 1999], [Jokar and Pfetsch, 2007]

A similar regularization term is used in Zhang et al (2006) in a
support-vector-machines objective.

Stephen Wright (UW-Madison) Sparse Optimization Methods Toulouse, February 2009 46 / 58



Proximal Linearized Step

Obtain step d by solving a prox-linearized subproblem:

PLS(x , µ): min
d

h(c(x) +∇c(x)d) +
µ

2
|d |2,

for some µ > 0.

Perturb d if necessary to nearby d̃ to restore finiteness of h(c(x + d̃)).

Set x ← x + d̃ if sufficient decrease in h ◦ c is obtained; otherwise
µ← τµ (for some fixed τ > 1) and re-solve PLS.

After a successful step, set µ← max(µmin, µ/τ).

Approach is suitable when PLS(x , µ) is much easier to solve than the
original problem.

Similar to Levenberg-Marquardt, in that the regularization parameter µ is
manipulated directly to obtain an acceptable step, not a trust region.
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The Prox-Linear Subproblem

When applied to compressed sensing, logistic regression, and matrix
completion, the step PLS(x , µ) is exactly the SpaRSA step.

`1 Penalty Function: The subproblem is:

min
d :x+d∈C

∇f (x)Td +
µ

2
‖d‖22 + τ‖(r(x) +∇r(x)Td)+‖1.

... similar to an SLP subproblem with an ‖ · ‖2 trust region.

Nonlinear Approximation

min
d
‖c(x) +∇c(x)Td‖+

µ

2
‖d‖22

... extending Levenberg-Marquardt.
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Assumption: Prox-Regularity of h

For most results assume prox-regular h: “convex to within a fudge term.”

h is prox-regular at c̄ for subgradient v̄ if h is finite at c̄ , locally lower
semicontinuous at c̄ , and there exists ρ > 0 such that

h(c ′) ≥ h(c) + 〈v , c ′ − c〉 − ρ

2
‖c ′ − c‖22

for all c ′, c near c̄ with h(c) near h(c̄) and v ∈ ∂h(c) near v̄ .

h is prox-regular at c̄ if it is prox-regular at c̄ for all subgradients
v̄ ∈ ∂h(c̄).

e.g. Max of quadratic functions (convex and concave) is prox-regular.
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Related Work

SLQP. An approach that uses a similar first-order step (with a different
trust region e.g. box-shaped) has been proposed for nonlinear
programming / composite nonsmooth minimization [Fletcher, Sainz de la
Maza, 1989] [Byrd et al., 2004] [Yuan, 1980s].

Proximal Point. Obtain step from

min
d

h(c(xk + d)) +
µ

2
‖d‖22.

[Marinet, 1970] for convex, lower semicontinuous; generalized by
[Rockafellar, 1976] and others. (Doesn’t linearize c .)

Casting Functions [Burke, 1985].

VU Theory and Algorithms. [Lemaréchal, Oustry, Sagastizábal, Mifflin,
Miller, Malick, Hare, Daniilidis]
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Result: Existence of Solution to PLS

Need a regularity (transversality) condition at critical point x̄ :

∂∞h(c̄) ∩ null(∇c(x̄)∗) = {0},

where ∂∞h is the “horizon subgradient” consisting of directions along
which h grows faster than any linear function.

Need µ larger than a threshold µ̄ that quantifies the nonconvexity of h at
c̄ = c(x̄).

Then for x near x̄ , we have a local solution d of PLS with d = O(|x − x̄ |).

If xr → x̄ and µr > µ̄, and either µr |xr − x̄ |2 → 0 or h(c(xr ))→ h(c(x̄)),
we have

h(c(xr ) +∇c(xr )dr )→ h(c(x̄)).
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Result: Restoring Feasibility

Curvature in c can cause h(c(x + d)) to be infinite even when
h(c(x) +∇c(x)d) is finite. However can do a small perturbation to
restore feasibility.

Assume

regularity: ∂∞h(c̄) ∩ null(∇c(x̄)∗) = {0},
smoothness of c , h lsc,

x near x̄ , d near 0, h(c(x) +∇c(x)d) near h(c(x)).

Then have d̃ with |d − d̃ | ≤ γ|d |2 and

h(c(x + d̃)) ≤ h(c(x) +∇c(x)d) + γ|d |2

for some γ > 0.

(Like a second-order correction.)
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Result: Multiplier Convergence, Uniqueness

The “multipliers” vr that satisfy

0 = ∇c(xr )
∗vr + µrdr

vr ∈ ∂h(c(xr ) +∇c(xr )dr )

are bounded and converge to a unique value when a stronger condition
(analogous to LICQ) holds:

par ∂h(c(x̄)) ∩Null∇c(x̄)∗ = {0}.

When this condition holds, the PLS solution dr near 0 is unique.
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Active Manifold Identification

In constrained optimization it is useful to be able to identify the active
constraints at the solution x∗, before x∗ itself is known. Can thus
accelerate local convergence, improve robustness of algorithms.

In the setting h(c(x)), we look for manifolds in c-space along which h is
smooth:

M = {c | h|Mis smooth}.

When x∗ is such that c(x∗) lies on such a manifold, and when we replace

criticality: ∂h(c̄) ∩ null (∇c(x̄)∗) 6= ∅
by strict criticality: ri ∂h(c̄) ∩ null (∇c(x̄)∗) 6= ∅,

(like strict complementarity) along with other conditions, then

c(xr ) +∇c(xr )dr ∈M

for all r sufficiently large. Also, stay on M after the “efficient projection.”
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ProxDescent: A Descent Algorithm Based on PLS

At iteration k:

Find a local solution of PLS at xk and the current µ that improves on
d = 0;

“efficiently project” xk + d onto the domain of h to get x+
k (require

(x+
k − xk) ≈ d).

Increase µ as necessary until a sufficient decrease test is satisfied:

h(c(xk))− h(c(x+
k )) ≥ .01

[
h(c(xk))− h(c(xk) +∇c(xk)Td)

]
Decrease µ (but enforce µ ≥ µmin) in preparation for next iteration.
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Convergence

Roughly:

The algorithm can step away from a non-stationary point: The
solution of PLS(x , µ) is accepted for µ large enough.

Cannot have accumulation at noncritical points that are nice (i.e.
where h is subdifferentially regular and transversality holds).

See paper for details.
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Extensions

Nonmonotone algorithms? Barzilai-Borwein choices of µ.

Second-order enhancements. Use the PLS problem to identify a
surface, then take a step along that surface with “real” second-order
information: Newton-like step for h(c(x))|M.

Inexact variants.

Regularizers other than (µ/2)|d |2.
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Conclusions

Sparse optimization draws on many areas of optimization, linear
algebra, and statistics as well as the underlying application areas.

There is some commonality across different areas that can be
abstracted and analyzed.

Much work remains!
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