Sparse Optimization Methods

Stephen Wright

University of Wisconsin-Madison

Toulouse, Feb 2009

Stephen Wright (UW-Madison)

Sparse Optimization Methods

Toulouse, February 2009 1 / 58

Sparse Optimization

- Motivation for Sparse Optimization
- Applications of Sparse Optimization
- Formulating Sparse Optimization Problems

2 Compressed Sensing

- 3 Matrix Completion
- 4 Composite Minimization Framework
- 5 Conclusions
- + Adrian Lewis, Ben Recht, Sangkyun Lee.

Look for simple approximate solution of optimization problem, rather than a (more complex) exact solution.

- Occam's Razor: Simple explanations of the observations are preferable to complex explanations.
- Noisy data doesn't justify solving the problem exactly.
- Simple / structured solutions are sometimes more robust to data inexactness.
- Often easier to actuate / implement / store / explain simple solutions.
- May conform better to prior knowledge.

When the solution is represented in an appropriate basis, simplicity or structure may show up as sparsity in x (i.e. few nonzero components).

Sparse optimization does not (necessarily) involve sparse linear algebra!

Example: Compressed Sensing

Given $k \times n$ matrix A and observation vector y, find sparse x with

 $Ax \approx y$.

We can reconstruct x from A and y, even when $k \ll n$ and when noise is present in y, provided:

- We know that x is sparse (or nearly so);
- There are enough observations k, relative to sparsity of x;
- A satisfies restricted isometry properties (RIP) that ensure that for all sparse vectors x^1 and x^2 , we have $||A(x^1 x^2)||_2 \approx ||x^1 x^2||_2$.

If A is a projection from \mathbb{R}^n onto a random k-dimensional subspace, it will have such properties. (Johnson-Lindenstrauss)

Reconstruction: Given A and y, and possibly some knowledge of sparsity level and noise type, recover x.

There are 204 spikes out of 4096 entries.

- Conventional signal processing indicates that you would need at least 4096 measurements (e.g. an FFT, a component-by-component sample) to determine x.
- Using compressed sensing, it can be reconstructed exactly from 1000 random linear combinations of the components of *x*.

Image Denoising: Given a rectangular array of pixel intensities $f = [f_{ij}]$, i, j = 1, 2, ..., N, find a "denoised" array $u = [u_{ij}]$ that is close to f but has smaller total variation (more cartoon-like).

Formulate as a data-fitting problem with a regularization term that penalizes the discrete spatial gradient of u:

$$\min_{u} P(u) := \frac{\lambda}{2} \|u - f\|_{2}^{2} + \sum_{i,j} \left\| \begin{bmatrix} u_{i+1,j} - u_{i,j} \\ u_{i,j+1} - u_{i,j} \end{bmatrix} \right\|_{2}$$

Tends to filter out random noise in pixels of f. As λ increases, u is closer to the measured image f.

Figure: CAMERAMAN: original (left) and noisy (right)

Figure: Denoised CAMERAMAN: Tol= 10^{-2} (left) and Tol= 10^{-4} (right).

Stephen Wright (UW-Madison)

Sparse Optimization Methods

Toulouse, February 2009 8 / 58

Seek low-rank matrix $X \in \mathbb{R}^{n_1 \times n_2}$ such that $X_{ij} \approx M_{ij}$ for $(i, j) \in \Omega$, where

- Ω is a set of index pairs in $\{1, 2, \dots, n_1\} \times \{1, 2, \dots, n_2\}$;
- *M_{ij}* are given observations.

Example: Netflix Prize, Covariance Estimation.

More general variant: Seek low-rank X such that $\mathcal{A}(X) \approx b$, where \mathcal{A} is a linear mapping on elements of X and b is the vector of observations.

In some sense, extends compressed sensing to matrix variables.

- "Simplicity" \sim "low rank" rather than sparsity.
- Many algorithmic ideas extend, and new ones arise.
- Linear algebra issues are more complicated and more central.

Example: Tensor Decompositions

Given an *N*-dimensional tensor X, the CP decomposition expresses X approximately as an outer product of F rank-1 tensors:

$$X_{i_1,i_2,\ldots,i_N} \approx \sum_{f=1}^F a_{i_1,f}^{(1)} a_{i_2,f}^{(2)} \ldots a_{i_N,f}^{(N)}.$$

Rank of a tensor is the smallest F for which exact equality holds. However things are much more complicated than in the matrix case (N = 2):

- F may be different over \mathbb{R} and \mathbb{C} .
- Finding *F* is NP-hard.
- Maximum and typical ranks of random tensors may be different.
- Minimum-rank decompositions are nonunique for matrices, but often unique for tensors.
- Can have a sequence of rank-*F* tensors approaching a rank-(*F* + 1) tensor.

There is interest in solving "tensor completion" problems where we find a rank-F tensor that closely approximates the observations in a given tensor,

Stephen Wright (UW-Madison)

Sparse Optimization Methods

- Deliver radiation from an external device to an internal tumor.
- Shape radiation beam, choose angles of delivery so as to deliver prescribed radiation dose to tumor while avoiding dose to surrounding tissue and organs.
- Use just a *few* different beam shapes and angles, to simplify the treatment, avoid spending too much time on the device, hopefully reduce the likelihood of treatment errors.

Linear accelerator, showing cone and collimators

э

Multileaf collimator. Leaves move up and down to shape the beam.

Stephen Wright (UW-Madison)

Sparse Optimization Methods

14 / 58

Sparse Optimization Methods

Toulouse, February 2009 15

- We are drowning in data!
- Key challenge: Extract salient information from large data sets efficiently.
- What's "Salient"
 - Main effects the essence not minor effects that possibly overfit the observations
 - The main effects are sometimes complex combinations of the basic ones — that is, we are looking for a small number from a potentially huge set — needle in a haystack.
 - The problem is sparse, by our definition.
- A few specific instances follow...

Example: Support Vector Machines (Linear)

- Have attribute vectors x_1, x_2, \ldots, x_m (real vectors) and labels y_1, y_2, \ldots, y_m (binary ± 1).
- Seek a hyperplane $w^T x b$ defined by (w, b) that separates the points according to their classification:

$$w^T x_i - b \ge 1 \Rightarrow y_i = 1, \qquad w^T x_i - b <= -1 \Rightarrow y_i = -1$$

(for most i).

 Obtain (w, b) from a function that penalizes incorrect classifications with a loss function, and also keeps ||w||₂ small:

$$\min_{(w,b)} \frac{\lambda}{2} w^T w + \sum_{i=1}^m \max\left(1 - y_i[w^T x_i - b], 0\right).$$

• Dual formulation:

$$\max_{\alpha} e^{T} \alpha - \frac{1}{2} \alpha^{T} Y^{T} K Y \alpha \text{ subject to } \alpha^{T} y = 0, \ 0 \le \alpha \le C \mathbf{1},$$

where
$$y = (y_1, y_2, \dots, y_m)^T$$
, $Y = \text{diag}(y)$, $K_{ij} = x_i^T x_j$ is the kernel.

18 / 58

Example: Support Vector Machines (Nonlinear)

Stephen Wright (UW-Madison)

Toulouse, February 2009 19

19 / 58

When a hyperplane is inadequate for separating the vectors, can find a nonlinear classifier by mapping the x_i into a higher-dimensional space (via a function $\phi : \mathbb{R}^n \to \mathcal{H}$) and doing linear classification there. When the hyperplane is projected into the original space, it gives a nonlinear surface.

Don't need to define ϕ explicitly! Instead define the kernel function k(s, t) to be a measure of closeness of s and t. Implicitly, $k(s, t) = \langle \phi(s), \phi(t) \rangle$.

Can define the *dual* SVM optimization problem and the classifier function in terms of k alone — no need for ϕ .

$$\max_{\alpha} e^{T} \alpha - \frac{1}{2} \alpha^{T} Y^{T} K Y \alpha \text{ subject to } \alpha^{T} y = 0, \ 0 \leq \alpha \leq (1/\lambda) \mathbf{1},$$

where $K_{ij} = k(x_i, x_j)$ is the kernel. (Can get a primal formulation too.)

Where does sparsity come in? Can formulate approximate versions of these problems in which few of the α are allowed to be nonzero. (In fact, these are more tractable when *m* is very large.)

Example: Regularized Logistic Regression

Have attribute vectors x_1, x_2, \ldots, x_m (real vectors) and labels y_1, y_2, \ldots, y_m (binary 0/1).

Instead of a classifier, want to construct a function p that will give the probability of a given vector X having label Y = 1.

Model *log odds* or *logit* function as linear combination of basis functions $B_l(x)$, l = 1, 2, ..., N (N may be huge):

$$\ln\left(\frac{p(x)}{1-p(x)}\right) = \sum_{l=0}^{N} a_l B_l(x),$$

Define a log-likelihood function (of the coefficients a_1, a_2, \ldots, a_N):

$$\frac{1}{m}\sum_{i=1}^{m} \left[y_i \log p(x_i) + (1-y_i) \log(1-p(x_i)) \right].$$

Choose coefficients $(a_1, a_2, ..., a_N)$ sparsely to approximately maximize this function.

Stephen Wright (UW-Madison)

Example: Regularized Regression

(Lasso: Tibshirani, 1997) Want to find a sparse least-squares solution to an overdetermined problem $Ax \approx b$. Solve:

$$\min_{x} \|Ax - b\|_{2}^{2} \text{ s.t. } \|x\|_{1} \leq T$$

for some parameter T > 0. In fact, can trace the solution x as a function of T. Generally higher T leads to less sparse x.

Can extend to group lasso, where x is broken into disjoint subvectors $x_{[l]}$, l = 1, 2, ..., K, and we impose the constraint:

$$\sum_{l=1}^{K} \|x_{[l]}\|_{\infty} \leq T \qquad \text{or} \qquad \sum_{l=1}^{K} \|x_{[l]}\|_{2} \leq T.$$

That is, each subvector $x_{[I]}$ is "turned on or off" as a group, not by individual components, e.g. [Turlach, Venables, Wright, 2005].

Can also have non-disjoint subvectors, i.e. when the components are arranged in a tree (e.g. wavelet coefficients), sometimes wish to turn subtrees on and off, not individual nodes.

Stephen Wright (UW-Madison)

Sparse Optimization Methods

Two basic ingredients:

- An underlying optimization problem often of data-fitting or max-likelihood type
- Regularization term or constraints or imposed structure to encourage sparsity / structure usually nonsmooth.

Usually large, computationally demanding. Need techniques from

- Large-scale optimization
- Nonsmooth optimization
- Conic programming
- Computational linear algebra
- Statistics
- Heuristics

Also a lot of domain-specific knowledge.

Nonsmooth Norms are Useful!

Consider first a scalar function $f : \mathbb{R} \to \mathbb{R}$. Want to find x that approximately minimizes f, but accept 0 as an approximate solution provided it's not too far off.

One approach is to add the nonsmooth regularizer |x| with parameter $\lambda>$ 0, and solve

 $\min_{x} f(x) + \lambda |x|$

First-order optimality conditions are $0 \in \partial f(x)$, where

$$\partial f(x) = \begin{cases} f'(x) - \lambda & \text{if } x < 0\\ f'(0) + \lambda[-1, 1] & \text{if } x = 0\\ f'(x) + \lambda & \text{if } x > 0. \end{cases}$$

Introduces nonsmoothness at the kink x = 0, making it more "likely" that 0 will be chosen as the solution.

The "likelihood" increases as λ increases.

Stephen Wright (UW-Madison)

Sparse Optimization Methods

Toulouse, February 2009 25 / 5

イロト イヨト イヨト イヨト

2

E ► < E ► Toulouse, February 2009

Image: A matrix

2

글 > - + 글 > Toulouse, February 2009

< □ > < ---->

2

In higher dimensions, if we design nonsmooth functions c(x) that have their "kinks" at points that are "sparse" according to our definition, then they are suitable regularizers for our problem.

Examples:

- $c(x) = ||x||_1$ will tend to produce x with few nonzeros.
- c(x) = ||x||₁ is less interesting kink only when all components are zero (all or nothing).
- c(x) = ||x||∞ has kinks where components of x are equal also may not be interesting for sparsity.
- c(x) = ∑^K_{l=1} ||x_[l]||₂ has kinks where x_[l] = 0 for some *l* − suitable for group sparsity.
- Total Variation norm: Has kinks where $u_{i,j} = u_{i+1,j} = u_{i,j+1}$ for some i, j, i.e. where spatial gradient is zero.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

$$Ax \approx y,$$
 $A \in \mathbb{R}^{n \times k}, n \ll k.$

Given sparsity level $S \le k$, A satisfies RIP with isometry constant $\delta_S < 1$ if for any column submatrix $A_{\cdot T}$ of A with at most S columns, we have

$$(1-\delta_{\mathcal{S}})\|c\|_2^2 \leq \|A_{\cdot \mathcal{T}}c\|_2^2 \leq (1+\delta_{\mathcal{S}})\|c\|_2^2, \qquad ext{for all } c\in \mathbb{R}^{\mathcal{S}}.$$

That is, each column submatrix with k columns is nearly orthonormal.

If δ_{2S} is somewhat less than 1, then A can distinguish clearly between any two vectors in \mathbb{R}^n with sparsity level S or below.

Random matrices with good RIP include:

- elements of A drawn i.i.d. from N(0,1);
- columns of A uniformly distributed on the unit sphere in \mathbb{R}^k ;
- row submatrix of discrete cosine transform.

27 / 58

A natural formulation for the recovery problem might be:

```
\min \|x\|_0 \text{ s.t. } \|Ax - b\|_2 \le \epsilon,
```

where ϵ is related to expected noise in measurements. This is intractable for general *A*.

However when RIP is good, greedy methods can succeed in recovering sparse signals.

In addition, fundamental theory in compressed sensing [Candes, Romberg, Tao 05], [Donoho 04] shows that when RIP or similar properties hold, $\|\cdot\|_1$ can be used as a surrogate for $\|\cdot\|_0$.

This observation leads to convex optimization formulations.

Optimization Formulations of the Recovery Problem

LASSO with parameter $\beta > 0$:

min
$$\frac{1}{2} ||Ax - y||_2^2$$
 subject to $||x||_1 \le \beta$.

Reconstruction with noise bound ϵ :

min
$$||x||_1$$
 subject to $||Ax - y||_2 \le \epsilon$.

Unconstrained nonsmooth formulation with regularization $\tau > 0$.

$$\min \frac{1}{2} \|Ax - y\|_2^2 + \tau \|x\|_1.$$

By varying their parameters, all three formulations generally lead to the same path of solutions.

Algorithms

- Interior-point:
 - Primal-dual: SparseLab / PDCO [Saunders et al 98, 02] 11_1s [Kim et al 07]
 - SOCP: ℓ_1 -magic [Candès, Romberg 05]
- Gradient projection on QP formulation: GPSR [Figueiredo, Nowak, Wright 07].
- Pivoting / Homotopy a la LARS: SparseLab / SolveLasso
- Iterative shrinking-thresholding / Forward-backward splitting / Fixed-point: [Daubechies, Defriese, DeMol 04], [Combettes, Wajs 05], FPC [Hale, Yin, Zhang 07], SpaRSA [Wright, Figueiredo, Nowak 08].
- Augmented Lagrangian / Bregman [Yin et al 08] SALSA [Afonso et al 09]
- Matching pursuit: OMP [Pati, Rezaiifar, Krishnaprasad 93] [Davis, Mallat, Avellaneda 97], CoSaMP [Needell, Tropp 08].
- Optimal first-order: [Nesterov 07], FISTA [Beck, Teboulle 08].

$$q(x) := \frac{1}{2} ||Ax - y||_2^2, \quad \nabla q(x) = A^T r, \text{ where } r := Ax - b.$$

OMP chooses elements of ∇q one at a time, allowing the corresponding components of x to move away from 0 and adjust r accordingly.

Given A, y, set t = 1, $r_0 = 0$, and $\Omega_0 = \emptyset$.

- Define n_t to be largest component of $A^T r_{t-1}$ and set $\Omega_t = \Omega_{t-1} \cup \{n_t\};$
- Solve reduced least squares problem $u_t := \min_u ||y A_{\Omega_t}u||_2^2$ and define $r_t = y A_{\Omega_t}u_t$;
- Seperat until termination test satisfied.

Main costs per iteration are multiplications by A and A^{T} .

- OMP is fundamental, extremely simple, and cheap, but theoretical guarantees are not too strong, and practical performance varies.
- Can form the basis of more sophisticated algorithms (e.g. CoSaMP) that have more complex strategies for updating Ω_t and make bigger changes to the reduced least-squares method at each iteration.
- In all these methods, if RIP holds, the matrix A_{Ω_t} is well conditioned provided $|\Omega_t|$ is not much bigger than the true sparsity of x.

SpaRSA

min
$$\phi(x) := \frac{1}{2} \|Ax - y\|_2^2 + \tau \|x\|_1.$$

Define $q(x) := (1/2) ||Ax - y||_2^2$. From iterate x^k , get step d by solving

$$\min_{d} \nabla q(x^k)^T d + \frac{1}{2} \alpha_k d^T d + \tau \|x^k + d\|_1.$$

Can view the α_k term as an approximation to the Hessian: $\alpha_k I \approx \nabla^2 q = A^T A$. (When RIP holds, this approximation is good, for small principal submatrices of AA^T .)

Subproblem is trivial to solve in O(n) operations, since it is separable in the components of d. Equivalent to the shrinkage operator:

$$\min_{z} \frac{1}{2} \|z - u^{k}\|_{2}^{2} + \frac{\tau}{\alpha_{k}} \|z\|_{1}, \quad \text{with } u^{k} := x^{k} - \frac{1}{\alpha_{k}} \nabla q(x^{k}).$$

- By choosing α_k greater than a threshold value $\bar{\alpha}$ at every iteration, can guarantee convergence, but slowly.
- Can use a Barzilai-Borwein (BB) strategy: choose α_k it to mimic the true Hessian $A^T A$ over the step just taken. e.g. do a least squares fit to:

$$[x^k - x^{k-1}] \approx \alpha_k^{-1} [\nabla q(x^k) - \nabla q(x^{k-1})].$$

Generally non-monotone.

- Cyclic BB variants: e.g. update α_k only every 3rd iteration.
- Get monotone variants by backtracking: set $\alpha_k \leftarrow 2\alpha_k$ repeatedly until a decrease in objective is obtained.

SpaRSA Implementation and Properties

- Exploits warm starts well.
- Problem is harder to solve for smaller τ (corresponding to more nonzeros in x). Performance improved greatly by continuation:
 - Choose initial $\tau_0 \leq ||A^T y||_{\infty}$ and decreasing sequence $\tau_0 > \tau_1 > \tau_2 > \ldots > \tau_{\text{final}} > 0$, where τ_{final} is the target final value.
 - Solve for τ equal to each element in sequence, using previous solution as the warm start.
- Debiasing: After convergence of the main algorithm, fix nonzero set (support) in x and minimize $||Ax b||_2^2$ over this reduced set.
- Can make large changes to the active manifold on a single step (like interior-point, unlike pivoting).
- Each iteration is cheap: one multiplication each with A or A^{T}

Seek low-rank matrix $X \in \mathbb{R}^{n_1 \times n_2}$ such that $\mathcal{A}(X) \approx b$, where \mathcal{A} is a linear mapping on elements of X and b is the vector of observations.

In some sense, extends matrix completion is compressed sensing on matrix variables. Linear algebra is more complicated.

Can formulate as

$$\min_X \operatorname{rank}(X)$$
 s.t. $\mathcal{A}(X) = b$

for exact observations, or

$$\min_X \operatorname{rank}(X) \text{ s.t. } \|\mathcal{A}(X) - b\| \leq \epsilon$$

for noisy observations.

To get a convex optimization formulation, replace rank(X) by its *convex* envelope on the set $\{X \mid ||X||_2 \leq 1\}$, which is the nuclear norm $||X||_*$ defined by

$$\|X\|_*=\sum_{i=1}^{n_2}\sigma_i(X),$$

where $\sigma_i(X)$ is the *i*th singular value of X. This is a nonsmooth convex function of X.

Obtain formulations

$$\min_{X} \|X\|_* \text{ s.t. } \mathcal{A}(X) = b \tag{1}$$

and

$$\min_{X} \tau \|X\|_{*} + \frac{1}{2} \|\mathcal{A}(X) - b\|_{2}^{2}.$$

Algorithms like SpaRSA

Obtain an extension of the SpaRSA approach by using $\alpha_k I$ to approximate $\mathcal{A}^*\mathcal{A}$. Obtain steps from the shrinkage operator by solving:

$$\min_{Z} \frac{\tau}{\alpha_k} \|Z\|_* + \frac{1}{2} \|Z - Y^k\|_F^2,$$

where

$$Y^k := X^k - \frac{1}{\alpha_k} \mathcal{A}^*(\mathcal{A}(X^k) - b).$$

e.g. [Ma, Goldfarb, Chen, 08]. Can prove convergence for α_k sufficiently large (uniformly greater than $\lambda_{\max}(\mathcal{A}^*\mathcal{A})/2$).

Can enhance by similar strategies as in compressed sensing:

- Continuation
- Barzilai-Borwein α_k , nonmonotonicity
- Debiasing.

Implementing Shrinking Methods

Main operation is the shrinkage operator:

$$\min_{Z} \nu \|Z\|_{*} + \frac{1}{2} \|Z - Y\|_{F}^{2},$$

which can be solved via an SVD of Y. Calculate $Y = U\Sigma V^{T}$, then define diagonal matrix $\Sigma(\nu)$ by

$$\Sigma(\nu)_{ii} = \max(\Sigma_{ii} - \nu, 0),$$

and set $Z = U\Sigma(\nu)V^T$. Expensive for problems of interesting size.

Need for approximate SVD strategies.

- possibly based on sampling;
- possibly using Lanczos iterations;
- possibly exploiting the fact that we often need only a few leading singular values and vectors

See [Halko, Martinsson, Tropp 09] for a review of sampling-based approximate factorizations.

Stephen Wright (UW-Madison)

39 / 58

Explicit Parametrization of X

From [Recht, Fazel, Parrilo 07] and earlier work of Burer, Monteiro, Choi in SDP setting.

Choose target rank r and approximate X by LR^T , where $L \in \mathbb{R}^{n_1 \times r}$ and $R \in \mathbb{R}^{n_1 \times r}$ are the unknowns in the problem. For the formulation:

 $\min_X \|X\|_* \text{ s.t. } \mathcal{A}(X) - b,$

we have the following *equivalent* formulation:

$$\min_{L,R} \frac{1}{2} \left(\|L\|_F^2 + \|R\|_F^2 \right) \quad \text{s.t. } \mathcal{A}(LR^T) = b.$$

A nonconvex minimization problem. Local solutions can be found by e.g. the method of multipliers [RFP 07], [Recht 08] using nonlinear conjugate gradient (modified Polak-Ribière) for the subproblems.

Can perform exact line search with a quartic rootfinder [Burer, Choi 06].

Stephen Wright (UW-Madison)

$$\min_{L,R} \tau \left(\|L\|_F^2 + \|R\|_F^2 \right) + \frac{1}{2} \left\| \mathcal{A}(LR^T) - b \right\|_2^2.$$

Again, can use nonlinear conjugate gradient with exact line search, and can do continuation on τ .

- No need for SVD. Implementations are easy.
- Local minima? [Burer 06] shows that (in an SDP setting) provided r is chosen large enough, the method should not converge to a local solution only the global solution.
- Performance degrades when rank is overestimated, probably because of degeneracy.

Investigations of this approach are ongoing.

Summarizing: Tools Used for Matrix Completion

• Formulation Tools:

- Nuclear norm as a proxy for rank.
- Lagrangian theory (equivalence of different formulations).
- No local solutions, despite nonconvexity.
- Optimization Tools:
 - Operator splitting (the basis of IST)
 - Gradient projection
 - (Optimal) gradient and subgradient methods
 - Augmented Lagrangian
 - Algorithms for large-scale nonlinear unconstrained problems (nonlinear CG, L-BFGS)
 - Semidefinite programming
 - Handling of degeneracy
- Linear Algebra Tools:
 - SVD
 - Approximate SVD via sampling
 - Lanczos

Composite Minimization Framework

[Lewis, Wright 08] Develop a general algorithmic framework and supporting theory, for extension of SpaRSA-like approaches to a much wider class of problems.

$$\min_{x} h(c(x))$$

- vector function $c : \mathbb{R}^n \to \mathbb{R}^m$ is smooth;
- scalar function $h : \mathbb{R}^m \to \mathbb{R}$ usually nonsmooth.

In most of the analysis, we allow h to be

- extended-valued (to enforce some constraints explicitly)
- subdifferentially regularity or prox-regular.

Many applications have h convex — the analysis is much simpler in this case.

Compressed Sensing

$$\min_{x} \frac{1}{2} \|Ax - b\|_{2}^{2} + \lambda \|x\|_{1}$$

where $A \in \mathbb{R}^{m \times n}$ with $m \ll n$. The second term induces sparsity in the optimal x, generally more sparse as λ increases. Composite formulation has m = n + 1 and

$$c(x) = \begin{bmatrix} f(x) \\ x \end{bmatrix}, \qquad h(c) = c_1 + \tau \| c_{2:n+1} \|_1.$$

Regularized Logistic Regression and Group-Regularized Regression problems can be framed similarly.

ℓ_1 Penalty Function:

$$\min f(x)$$
 s.t. $r(x) \leq 0, x \in C$

 ℓ_1 penalty is

 $\min_{x\in\mathcal{C}} f(x) + \tau \|r(x)_+\|_1$

Set

$$c(x) = \begin{bmatrix} f(x) \\ r(x) \\ x \end{bmatrix}, \qquad h(c) = c_1 + \tau \sum_{j=2}^{n_c+1} \max(c_j, 0) + \delta_{\mathcal{C}}(c_{n_c+2:n_c+n+1}).$$

Nonlinear Approximation

 $\min \|c(x)\|,$

where $\|\cdot\|$ is ℓ_1 , ℓ_2 , ℓ_∞ , or Huber function, for example.

Alternative to ℓ_1 regularization whre the penalty for large $|x_i|$ is attenuated:

$$\min_x |f(x)+\lambda|x|_*, \hspace{1em} ext{where} \hspace{1em} |x|_* = \sum_{i=1}^n (1-e^{-lpha|x|_i}),$$

for some $\alpha > 0$. [Mangasarian, 1999], [Jokar and Pfetsch, 2007]

A similar regularization term is used in Zhang et al (2006) in a support-vector-machines objective.

Obtain step d by solving a prox-linearized subproblem:

$$\mathsf{PLS}(x,\mu): \qquad \min_d \ h(c(x) + \nabla c(x)d) + \frac{\mu}{2}|d|^2,$$

for some $\mu > 0$.

- Perturb d if necessary to nearby \tilde{d} to restore finiteness of $h(c(x + \tilde{d}))$.
- Set $x \leftarrow x + \tilde{d}$ if sufficient decrease in $h \circ c$ is obtained; otherwise $\mu \leftarrow \tau \mu$ (for some fixed $\tau > 1$) and re-solve PLS.
- After a successful step, set $\mu \leftarrow \max(\mu_{\min}, \mu/\tau)$.

Approach is suitable when $PLS(x, \mu)$ is much easier to solve than the original problem.

Similar to Levenberg-Marquardt, in that the regularization parameter μ is manipulated directly to obtain an acceptable step, *not* a trust region.

When applied to compressed sensing, logistic regression, and matrix completion, the step $PLS(x, \mu)$ is exactly the SpaRSA step.

 ℓ_1 Penalty Function: The subproblem is:

$$\min_{d:x+d\in\mathcal{C}} \nabla f(x)^T d + \frac{\mu}{2} \|d\|_2^2 + \tau \|(r(x) + \nabla r(x)^T d)_+\|_1.$$

... similar to an SLP subproblem with an $\|\cdot\|_2$ trust region.

Nonlinear Approximation

$$\min_{d} \|c(x) + \nabla c(x)^{T} d\| + \frac{\mu}{2} \|d\|_{2}^{2}$$

... extending Levenberg-Marquardt.

For most results assume prox-regular *h*: "convex to within a fudge term." *h* is *prox-regular at* \bar{c} *for subgradient* \bar{v} if *h* is finite at \bar{c} , locally lower semicontinuous at \bar{c} , and there exists $\rho > 0$ such that

$$h(c') \geq h(c) + \langle v, c' - c
angle - rac{
ho}{2} \|c' - c\|_2^2$$

for all c', c near \overline{c} with h(c) near $h(\overline{c})$ and $v \in \partial h(c)$ near \overline{v} .

h is *prox-regular at* \bar{c} if it is prox-regular at \bar{c} for all subgradients $\bar{v} \in \partial h(\bar{c})$.

e.g. Max of quadratic functions (convex and concave) is prox-regular.

SLQP. An approach that uses a similar first-order step (with a different trust region e.g. box-shaped) has been proposed for nonlinear programming / composite nonsmooth minimization [Fletcher, Sainz de la Maza, 1989] [Byrd et al., 2004] [Yuan, 1980s].

Proximal Point. Obtain step from

$$\min_{d} h(c(x_{k}+d)) + \frac{\mu}{2} \|d\|_{2}^{2}.$$

[Marinet, 1970] for convex, lower semicontinuous; generalized by [Rockafellar, 1976] and others. (Doesn't linearize c.)

Casting Functions [Burke, 1985].

VU Theory and Algorithms. [Lemaréchal, Oustry, Sagastizábal, Mifflin, Miller, Malick, Hare, Daniilidis]

A B F A B F

Need a regularity (transversality) condition at critical point \bar{x} :

$$\partial^{\infty} h(\bar{c}) \cap \operatorname{null}(\nabla c(\bar{x})^*) = \{0\},\$$

where $\partial^{\infty} h$ is the "horizon subgradient" consisting of directions along which h grows faster than any linear function.

Need μ larger than a threshold $\bar{\mu}$ that quantifies the nonconvexity of *h* at $\bar{c} = c(\bar{x})$.

Then for x near \bar{x} , we have a local solution d of PLS with $d = O(|x - \bar{x}|)$.

If $x_r \to \bar{x}$ and $\mu_r > \bar{\mu}$, and either $\mu_r |x_r - \bar{x}|^2 \to 0$ or $h(c(x_r)) \to h(c(\bar{x}))$, we have

$$h(c(x_r) + \nabla c(x_r)d_r) \rightarrow h(c(\bar{x})).$$

Curvature in c can cause h(c(x + d)) to be infinite even when $h(c(x) + \nabla c(x)d)$ is finite. However can do a small perturbation to restore feasibility.

Assume

- regularity: $\partial^{\infty} h(\bar{c}) \cap \operatorname{null}(\nabla c(\bar{x})^*) = \{0\},\$
- smoothness of c, h lsc,
- x near \bar{x} , d near 0, $h(c(x) + \nabla c(x)d)$ near h(c(x)). Then have \tilde{d} with $|d - \tilde{d}| \le \gamma |d|^2$ and

$$h(c(x+\tilde{d})) \leq h(c(x)+\nabla c(x)d)+\gamma |d|^2$$

for some $\gamma > 0$.

(Like a second-order correction.)

The "multipliers" v_r that satisfy

$$0 = \nabla c(x_r)^* v_r + \mu_r d_r$$
$$v_r \in \partial h(c(x_r) + \nabla c(x_r) d_r)$$

are bounded and converge to a unique value when a stronger condition (analogous to LICQ) holds:

$$\operatorname{par} \partial h(c(\bar{x})) \cap \operatorname{Null} \nabla c(\bar{x})^* = \{0\}.$$

When this condition holds, the PLS solution d_r near 0 is unique.

Active Manifold Identification

In constrained optimization it is useful to be able to identify the active constraints at the solution x^* , before x^* itself is known. Can thus accelerate local convergence, improve robustness of algorithms.

In the setting h(c(x)), we look for manifolds in *c*-space along which *h* is smooth:

 $\mathcal{M} = \{ c \mid h |_{\mathcal{M}} \text{is smooth} \}.$

When x^* is such that $c(x^*)$ lies on such a manifold, and when we replace

criticality:	$\partial h(ar{c}) \cap \operatorname{null} \left(abla c(ar{x})^* ight) eq \emptyset$
by <i>strict</i> criticality:	$\operatorname{ri} \partial h(ar{c}) \cap \operatorname{null} (abla c(ar{x})^*) eq \emptyset$

(like strict complementarity) along with other conditions, then

 $c(x_r) + \nabla c(x_r) d_r \in \mathcal{M}$

for all r sufficiently large. Also, stay on \mathcal{M} after the "efficient projection",

Stephen Wright (UW-Madison)

At iteration k:

- Find a local solution of PLS at x_k and the current μ that improves on d = 0;
- "efficiently project" $x_k + d$ onto the domain of h to get x_k^+ (require $(x_k^+ x_k) \approx d$).
- Increase μ as necessary until a sufficient decrease test is satisfied:

$$h(c(x_k)) - h(c(x_k^+)) \ge .01 \left[h(c(x_k)) - h(c(x_k) + \nabla c(x_k)^T d) \right]$$

• Decrease μ (but enforce $\mu \ge \mu_{\min}$) in preparation for next iteration.

Roughly:

- The algorithm can step away from a non-stationary point: The solution of PLS(x, μ) is accepted for μ large enough.
- Cannot have accumulation at noncritical points that are nice (i.e. where *h* is subdifferentially regular and transversality holds).

See paper for details.

- Nonmonotone algorithms? Barzilai-Borwein choices of μ .
- Second-order enhancements. Use the PLS problem to identify a surface, then take a step along that surface with "real" second-order information: Newton-like step for h(c(x))|_M.
- Inexact variants.
- Regularizers other than $(\mu/2)|d|^2$.

- Sparse optimization draws on many areas of optimization, linear algebra, and statistics as well as the underlying application areas.
- There is some commonality across different areas that can be abstracted and analyzed.
- Much work remains!