Inexact range-space Krylov solvers for linear systems arising from inverse problems

Serge Gratton, Philippe Toint and Jean Tshimanga

Department of Mathematics, University of Namur, Belgium

(philippe.toint@fundp.ac.be)

Toulouse, February 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation: data assimilation for weather forecasting

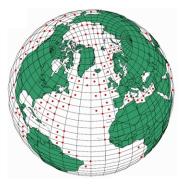
(Attempt to) predict...

- tomorrow's weather
- the ocean's average temperature next month
- future gravity field
- future currents in the ionosphere

• . . .

Data assimilation for weather forecasting (2)

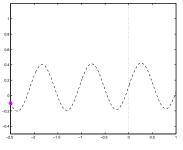
Data: temperature, wind, pressure, ... everywhere and at all times!



May involve up to 1,000,000,000 variables!

Data assimilation for weather forecasting (3)

The principle:

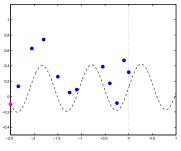


temp. vs. days

• Known situation 2.5 days ago and background prediction

Data assimilation for weather forecasting (3)

The principle:



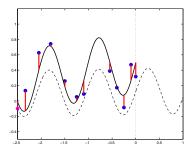
temp. vs. days

- Known situation 2.5 days ago and background prediction
- Record temperature for the past 2.5 days

Data assimilation for weather forecasting (3)

The principle:

Minimize deviation between model and past observations



- Known situation 2.5 days ago and background prediction
- Record temperature for the past 2.5 days
- Run the model to minimize difference | between model and observations

temp. vs. days

$$\min_{x_0} \frac{1}{2} \|x_0 - x_b\|_{B^{-1}}^2 + \frac{1}{2} \sum_{i=0}^N \|\mathcal{HM}(t_i, x_0) - b_i\|_{R_i^{-1}}^2$$

Data assimilation for weather forecasting (3)

The principle:

Minimize deviation between model and past observations

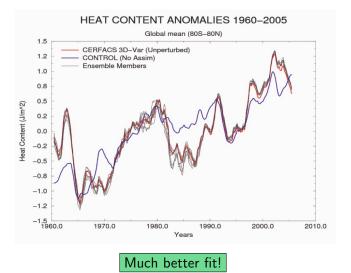


temp. vs. days

- Known situation 2.5 days ago and background prediction
- Record temperature for the past 2.5 days
- Run the model to minimize difference
 I between model and observations
- Predict temperature for the next day

Data assimilation for weather forecasting (4)

Analysis of the ocean's heat content:



Data assimilation problem: reformulations (1)

initial formulation:

$$\min_{x_0} \frac{1}{2} \|x_0 - x_b\|_{B^{-1}}^2 + \frac{1}{2} \sum_{i=0}^N \|\mathcal{HM}(t_i, x_0) - y_i\|_{R_i^{-1}}^2.$$

linearize, concatenate successive times and define $x_0 = x_s + s$:

$$\min_{x_0} \frac{1}{2} (x_s + s - x_b)^T B^{-1} (x_s + s - x_b) + \frac{1}{2} (Hs - d)^T R^{-1} (Hs - d)$$

write optimality conditions, using $c = x_b - x_s$:

$$(B^{-1} + H^T R^{-1} H)s = H^T d + B^{-1} c$$

Data assimilation problem: reformulations (2)

precondition using $z = B^{-1/2}s$ and :

$$\left(I + \underbrace{B^{1/2}H^{T}R^{-1/2}}_{K^{T}}\underbrace{R^{-1/2}HB^{1/2}}_{K}\right)z = \underbrace{B^{1/2}H^{T}R^{-1/2}}_{K^{T}}R^{-1/2}d + B^{-1/2}c$$

or

precondition using $z = B^{-1}s$:

$$\left(I + \underbrace{H^{\mathsf{T}}R^{-1}}_{K^{\mathsf{T}}}\underbrace{HB^{-1}}_{L}\right)z = \underbrace{H^{\mathsf{T}}R^{-1}}_{K^{\mathsf{T}}}d + B^{-1}c$$

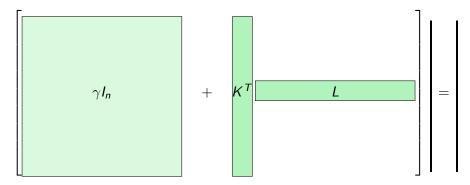
In practice: use CG with reorthogonalization (on problems where $n \approx 100,000$)...

The formal problem

Assume we now wish to solve

$$(\gamma I_n + K^T L)s = b$$

where $\gamma \neq 0$

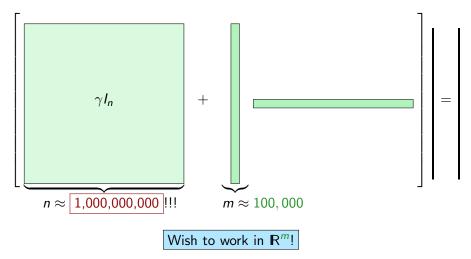


Note: We do not assume full-rank of K or L

Philippe Toint (Namur)

The problem's sizes

But



The standard GMRES for unsymmetric systems Ax = b

Based on the sequence of nested Krylov spaces:

$$\mathcal{K}_k(A,b) = \operatorname{span}(b,Ab,\ldots,A^{k-1}b)$$

Main idea:

At iteration k,

- build an orthonormal basis of $\mathcal{K}_k(A, b)$
- "solve" the problem in $\mathcal{K}_k(A, b)$ using this basis
- check for convergence?
- + get the solution in \mathbb{R}^n

"solve" may be:

• minimize the residual of the restricted problem \Rightarrow GMRES

• solve a (small) system of linear equations \Rightarrow FOM

GMRES for Ax = b (2)

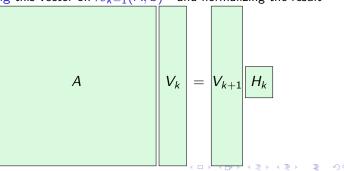
How to do that?

1. using $\mathcal{K}_{k-1}(A,b)\subset \mathcal{K}_k(A,b)$, incrementally build the basis of the span of

$$V_k = \begin{bmatrix} v_1, v_2, \dots, v_{k-1}, v_k \end{bmatrix}$$
 with $V_k^T V_k = I_k$

by

- computing Av_{k-1} (to create a new dimension)
- projecting this vector on $\mathcal{K}_{k-1}(A, b)^{\perp}$ and normalizing the result



GMRES for Ax = b (3)

How to do that?

2. Reduce the problem to $\mathcal{K}_k(A, b)$ (i.e. $x_k \in \mathcal{K}_k(A, b)$)

$$\|\underbrace{AV_ky_k - b}_{\text{size n}}\| = \|V_{k+1}H_ky_k - \beta V_{k+1}e_1\| = \|\underbrace{H_ky_k - \beta e_1}_{\text{size }k}\|$$

Then solve

$$\min_{y} \|H_{k}y - \beta e_{1}\| \to y_{k} \quad \text{or} \quad \text{solve}_{y} \ H_{k}^{\Box}y = \beta e_{1} \to y_{k}$$

$$\left\| \begin{array}{c} H_{k} \\ H_{k} \\ \end{array} \right\| - \left\| \begin{array}{c} \\ \\ \end{array} \right\| \quad \text{or} \quad H_{k}^{\Box} \\ \end{array} \right\| = \left| \\ \text{(minimum residual)} \quad (\text{Galerkin}) \\ \text{(negligeable cost...)} \end{array}$$

GMRES for Ax = b (4)

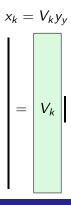
How to do that?

3. Test convergence: terminate if

$$\|H_k y_k - \beta e_1\| \le \epsilon_A$$
 or

$$\frac{\|H_k y_k - \beta e_1\|}{\|H_k\| \|y_k\| + \beta} \le \epsilon_R$$

4. Reconstruct solution in \mathbb{R}^n :



GMRES, FOM, MINRES and CG for Ax = b

 $\{\|r_k\|\}\$ decreases monotonically, where $r_k = AV_ky_k - b$

(GMRES)

۰

$$f_k = y_k^T V_k^T A V_k y_k - b^T V_k y_k$$
 decreases monotonically

(FOM)

• Can be extended to exploit symmetry \Rightarrow MINRES, CG

(in exact arithmetic)

• Performs well in practice, but high storage cost (V_k) .

The standard GMRES algorithm

$$s =$$
GMRES(K, L, b)

Operator Define
$$\beta_1 = \|b\|$$
 and $v_1 = b/\beta_1$.
For $k = 1, \ldots, m$,
w_k = $K^T L v_k$
for $i = 1, \ldots, k$,
for $i = 1, \ldots, k$,
a $H_{i,k} = v_i^T w_k$
b $w_k \leftarrow w_k - H_{i,k} v_i$
b $H_{k,k} \leftarrow H_{k,k} + \gamma$,
c $\beta_{k+1} = H_{k+1,k} = \|w_k\|$,
c $y_k = \arg \min_y \|Hy - \beta_1 e_1\|$,
d $\|Hy_k - \beta_1 e_1\| < \epsilon$, break.
Return $s = V_k y_k$.

・ロト ・回ト ・ヨト ・ヨ

Range-space GMRES: the main idea

Return to the case of interest where

$$A = \gamma I_n + K^T L$$
 and $b = K^T d$.

Observe that

$$span_{i=0,\dots,k-1} \left[\left(\gamma I_n + K^T L \right)^i b \right] = span_{i=0,\dots,k-1} \left[\left(K^T L \right)^i b \right]$$
$$\mathcal{K}_k(\gamma I_n + K^T L, b) = span(b, K^T L b, \dots, (K^T L)^{k-1} b)$$
$$= span(K^T d, K^T L K^T d, \dots, (K^T L)^{k-1} K^T d)$$
$$= K^T span(d, L K^T d, \dots, (L K^T)^{k-1} d)$$

$$\mathcal{K}_k(\gamma I_n + \mathcal{K}^T L, b) = \mathcal{K}^T \mathcal{K}_k(L \mathcal{K}^T, d)$$

(Gratton, Tshimanga for CG)

Philippe Toint (Namur)

The range-space GMRES (1)

Main objectives

- all vectors now of size m! Factor K^T in the algorithm $(v = K^T \hat{v})$
- good variational properties maintained
- need to compute norms in Rⁿ:

$$\|v\|^{2} = \|\mathcal{K}^{\mathsf{T}}\hat{v}\|^{2} = \hat{v}^{\mathsf{T}}\underbrace{\mathcal{K}\mathcal{K}^{\mathsf{T}}\hat{v}}_{\hat{\mathcal{F}}} = \hat{v}^{\mathsf{T}}\hat{z}$$

- store \hat{V}_k and \hat{Z}_k (but of size m)
- additional product by K to compute $||v_k|| \dots$

No free lunch... for the unsymmetric case

The range-space GMRES (2)

$$s = RSGMR0(K, L, d)$$

1 Define
$$p_1 = K^T d$$
, $\hat{z}_1 = K p_1$,
2 Set $\beta_1 = \sqrt{d^T \hat{z}_1}$, $\hat{v}_1 = d/\beta_1$, $\hat{z}_1 \leftarrow \hat{z}_1/\beta_1$ and $p_1 \leftarrow p_0/\beta_1$.
3 For $k = 1, \ldots, m$,
4 $\hat{w}_k = L p_k$
5 for $i = 1, \ldots, k$,
6 $\hat{w}_k \leftarrow \hat{w}_k - H_{i,k} \hat{v}_i$
6 $H_{k,k} \leftarrow H_{k,k} + \gamma$,
7 $P_{k+1} = K^T \hat{w}_k$, $\hat{z}_{k+1} = K p_k$, $\beta_{k+1} = H_{k+1,k} = \sqrt{\hat{z}_{k+1}^T \hat{w}_k}$,
9 $\hat{v}_{k+1} \leftarrow \hat{w}_k/\beta_{k+1}$, $\hat{z}_{k+1} \leftarrow \hat{z}_k/\beta_{k+1}$, $p_{k+1} \leftarrow p_k/H_{k+1,k}$,
9 $y_k = \arg \min_y ||Hy - \beta_1 e_1||$,
9 if $||Hy_k - \beta_1 e_1|| < \epsilon$, break.
10 Return $s = K^T \hat{V}_k y_k$.

The range-space GMRES (3)

If $b \notin \operatorname{range}(K^T)$...

• change K (and L)!

$$\overline{K} = \begin{bmatrix} K \\ b^T \end{bmatrix}$$
 and $\overline{L} = \begin{bmatrix} L \\ 0^T \end{bmatrix}$

and

$$\overline{K}^T \overline{L} = K^T L$$
 with $\overline{K}^T e_{m+1} = b$

• vectors of size m + 1.

► < ∃ ►</p>

The range-space GMRES (4)

s = RSGMR(K, L, b)

O Define
$$\beta_1 = ||b||$$
, $p_1 = b$, $u = Kb$, $\hat{z}_1 = u/\beta_1$,
and $\hat{v}_1 = e_{m+1}/\beta_1$.
For $k = 1, \ldots, m+1$,
a $\hat{w}_k^T = [(Lp_k)^T 0]$, $\hat{w}_k \leftarrow \hat{w}_k/\beta_k$,
a for $i = 1, \ldots, k$,
a $H_{i,k} = [\hat{z}_i^T 0] \hat{w}_k$
a $\hat{w}_k \leftarrow \hat{w}_k - H_{i,k} \hat{v}_i$
b $H_{k,k} \leftarrow H_{k,k} + \gamma$,
a $P_{k+1} = [K^T b] \hat{w}_k$, $\hat{z}_{k+1} = Kp_{k+1}$, $\zeta_{k+1} = [u^T \beta_1^2] \hat{w}_k$,
b $\hat{v}_{k+1} \leftarrow \hat{w}_k/\beta_{k+1}$, $\hat{z}_{k+1} \leftarrow \hat{z}_k/\beta_{k+1}$,
b $\hat{v}_{k+1} \leftarrow \hat{w}_k/\beta_{k+1}$, $\hat{z}_{k+1} \leftarrow \hat{z}_k/\beta_{k+1}$,
c $y_k = \arg\min_y ||Hy - \beta_1e_1||$,
c $||Hy_k - \beta_1e_1|| < \epsilon$, break.
c Return $s = [K^T b] \hat{V}_k y_k$.

Full- vs range-space Krylov methods

At iteration k:

	GMRES	RSGMR
storage	n(k+1) + k(k+3)/2	n + (2m + 1)k + k(k + 3)/2
internal flops	4 <i>nk</i> + 3 <i>n</i> + [<i>sol</i>]	4mk + 7m + [sol]
products by	K^{T} , L	κ ^τ , κ , L
	FOM (sym)	RSFOM (sym)
storage	n(k+1) + k(k+3)/2	(2m+1)k + k(k+3)/2
internal flops	4 <i>nk</i> + 3 <i>n</i> + [<i>sol</i>]	4mk + 6m + [sol]
products by	K^{T} , K	K^{T} , K

Can we reduce cost further?

Inexact products: the context

Possible answer: inexact matrix-vector products

(Simoncini and Szyld, van den Eshof and Sleipen, Giraud, Gratton and Langou, ...)

Motivations:

- stability wrt roundoff errors
 (remember iterates of RSGMR belong to range(κ^T)!)
- allow cheap products (truncated B^{-1} , R^{-1} , simplified models,...)

Two error models for the result of $p \approx Av$:

Backward:

$$p = (A + E)v$$
 with $||E|| \le \tau ||A||$

2 Forward:

$$p = Av + e$$
 with $||e|| \le \tau ||Av||$.

Inexact products: results for the backward error model

Define

$$q_k = H_k y_k - \beta e_1, \quad G = \max \left[\|K\|, \|L\| \right] \quad \omega_k = \max_{1, \dots, k} \|\hat{v}_i\|$$

 $\kappa(K) =$ condition number of K

(... after some analysis...)

Assume the backward error model. Then

$$\|r_k\| \leq \sqrt{2(k+1)} \|q_k\| + \|K\|\omega_k \Big[\tau_*\gamma\sqrt{k}\|y_k\| + 4 G^2 \sum_{i=1}^k |[y_k]_i| \tau_i\Big] \\ \leq \sqrt{2(k+1)} \Big[\|q_k\| + \tau_{\max}\kappa(K) (\gamma + 4 G^2)\|y_k\|\Big].$$

Inexact products: results for the forward error model

Assume the forward error model. Then

$$\|r_k\| \leq \sqrt{2(k+1)} \|q_k\| + \sqrt{2} \left[\tau_* \gamma \sqrt{k} \|y_k\| + 4 G \|K\| \sum_{i=1}^k |[y_k]_i| \tau_i \right]$$

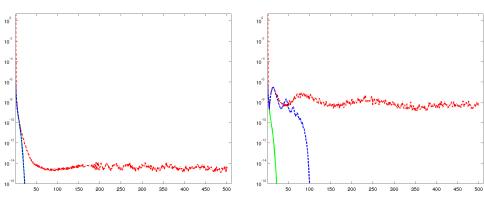
$$\leq \sqrt{2(k+1)} \left[\|q_k\| + \tau_{\max} \left(\gamma + 4 G \|K\| \right) \|y_k\| \right]$$

Note in both sets of bounds:

- first of these bounds allow for variable accuracy requirements
- special role of τ_*

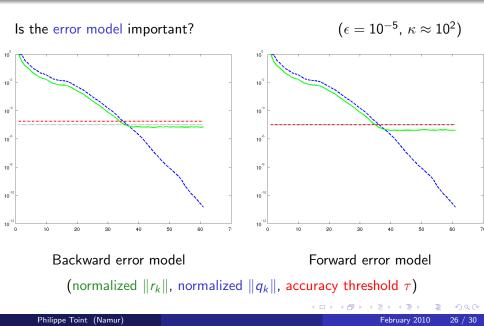
CG with inexact products

Is CG a reasonable framework for inexact products?

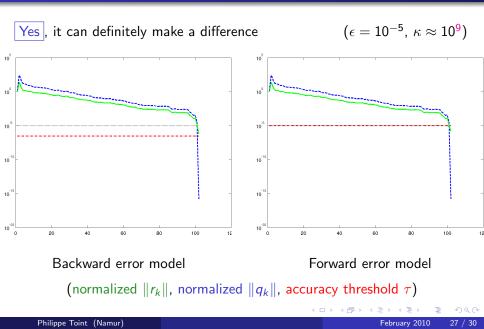


Comparing $||r_k||/(||A|| ||s_*||)$ for FOM, CG with reorthog and CG for exact(left) and inexact (right) products ($\tau = 10^{-9}$, $\kappa \approx 10^6$)

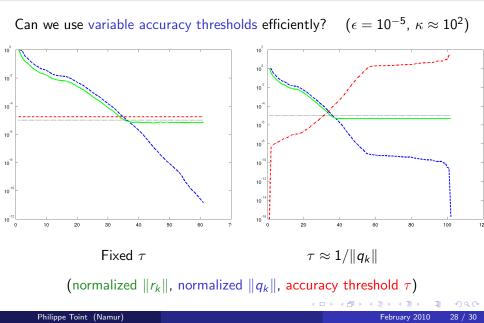
RSGMR and the error models (2)



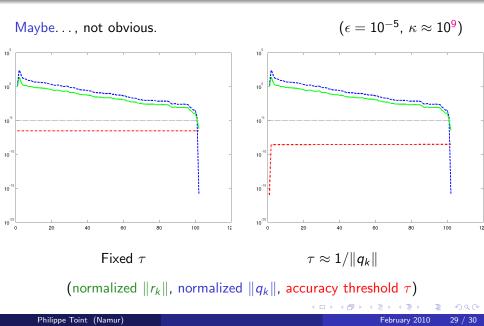
RSGMR and the error models (2)



Fixed vs variable accuracy thresholds (1)



Fixed vs variable accuracy thresholds (2)



Conclusions

Conclusions

- Range space methods may be designed to gain from low rank
- Further gains may be obtained from inexact products
- Formal bounds on the residual norms are available in this context
- Forward error modelling gives more flexibility than backward
- Many open questions ... but very interesting
- Opens further doors for algorithm design:
 - efficiently spending one's "inaccuracy budget"
 - short recurrence methods
 - inexact full-space methods using forward error(?)
 - ...
- True application: a real challenge (but we are working on it!)

Many thanks for your attention!