Inexact range-space Krylov solvers for linear systems arising from inverse problems

Serge Gratton, Philippe Toint and Jean Tshimanga
Department of Mathematics, University of Namur, Belgium
(philippe.toint@fundp.ac.be)

Toulouse, February 2010

Motivation: data assimilation for weather forecasting

(Attempt to) predict...

- tomorrow's weather
- the ocean's average temperature next month
- future gravity field
- future currents in the ionosphere
- ...

Data assimilation for weather forecasting (2)

Data: temperature, wind, pressure, ... everywhere and at all times!

May involve up to $1,000,000,000$ variables!

Data assimilation for weather forecasting (3)

The principle:

- Known situation 2.5 days ago and background prediction
temp. vs. days

Data assimilation for weather forecasting (3)

The principle:

- Known situation 2.5 days ago and background prediction
- Record temperature for the past 2.5 days
temp. vs. days

Data assimilation for weather forecasting (3)

The principle:

Minimize deviation between model and past observations

- Known situation 2.5 days ago and background prediction
- Record temperature for the past 2.5 days
- Run the model to minimize difference I between model and observations
temp. vs. days

$$
\min _{x_{0}} \frac{1}{2}\left\|x_{0}-x_{b}\right\|_{B^{-1}}^{2}+\frac{1}{2} \sum_{i=0}^{N}\left\|\mathcal{H} \mathcal{M}\left(t_{i}, x_{0}\right)-b_{i}\right\|_{R_{i}^{-1}}^{2} .
$$

Data assimilation for weather forecasting (3)

The principle:

Minimize deviation between model and past observations

temp. vs. days

- Known situation 2.5 days ago and background prediction
- Record temperature for the past 2.5 days
- Run the model to minimize difference I between model and observations
- Predict temperature for the next day

Data assimilation for weather forecasting (4)

Analysis of the ocean's heat content:
CERFACS (2009)

HEAT CONTENT ANOMALIES 1960-2005

Much better fit!

Data assimilation problem: reformulations (1)

initial formulation:

$$
\min _{x_{0}} \frac{1}{2}\left\|x_{0}-x_{b}\right\|_{B^{-1}}^{2}+\frac{1}{2} \sum_{i=0}^{N}\left\|\mathcal{H} \mathcal{M}\left(t_{i}, x_{0}\right)-y_{i}\right\|_{R_{i}^{-1}}^{2}
$$

linearize, concatenate successive times and define $x_{0}=x_{s}+s$:

$$
\min _{x_{0}} \frac{1}{2}\left(x_{s}+s-x_{b}\right)^{T} B^{-1}\left(x_{s}+s-x_{b}\right)+\frac{1}{2}(H s-d)^{T} R^{-1}(H s-d)
$$

write optimality conditions, using $c=x_{b}-x_{s}$:

$$
\left(B^{-1}+H^{T} R^{-1} H\right) s=H^{T} d+B^{-1} c
$$

Data assimilation problem: reformulations (2)

precondition using $z=B^{-1 / 2} s$ and :

$$
(I+\underbrace{B^{1 / 2} H^{T} R^{-1 / 2}}_{K^{T}} \underbrace{R^{-1 / 2} H B^{1 / 2}}_{K}) z=\underbrace{B^{1 / 2} H^{T} R^{-1 / 2}}_{K^{T}} R^{-1 / 2} d+B^{-1 / 2} c
$$

or
precondition using $z=B^{-1} s$:

$$
(I+\underbrace{H^{T} R^{-1}}_{K^{T}} \underbrace{H B^{-1}}_{L}) z=\underbrace{H^{T} R^{-1}}_{K^{T}} d+B^{-1} c
$$

In practice: use CG with reorthogonalization (on problems where $n \approx 100,000$)...

The formal problem

Assume we now wish to solve

$$
\left(\gamma I_{n}+K^{\top} L\right) s=b
$$

where $\gamma \neq 0$

Note: We do not assume full-rank of K or L

The problem's sizes

But

Wish to work in \mathbb{R}^{m} !

The standard GMRES for unsymmetric systems $A x=b$

Based on the sequence of nested Krylov spaces:

$$
\mathcal{K}_{k}(A, b)=\operatorname{span}\left(b, A b, \ldots, A^{k-1} b\right)
$$

Main idea:

At iteration k,

- build an orthonormal basis of $\mathcal{K}_{k}(A, b)$
- "solve" the problem in $\mathcal{K}_{k}(A, b)$ using this basis
- check for convergence?
+ get the solution in \mathbb{R}^{n}
"solve" may be:
- minimize the residual of the restricted problem \Rightarrow GMRES
- solve a (small) system of linear equations \Rightarrow FOM

GMRES for $A x=b(2)$

How to do that?

1. using $\mathcal{K}_{k-1}(A, b) \subset \mathcal{K}_{k}(A, b)$, incrementally build the basis of the span of

$$
V_{k}=\left[v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}\right] \quad \text { with } \quad V_{k}^{T} V_{k}=I_{k}
$$

by

- computing $A v_{k-1}$ (to create a new dimension)
- projecting this vector on $\mathcal{K}_{k-1}(A, b)^{\perp}$ and normalizing the result

GMRES for $A x=b(3)$

How to do that?
2. Reduce the problem to $\mathcal{K}_{k}(A, b)$ (i.e. $\left.x_{k} \in \mathcal{K}_{k}(A, b)\right)$

$$
\|\underbrace{A V_{k} y_{k}-b}_{\text {size } \mathrm{n}}\|=\left\|V_{k+1} H_{k} y_{k}-\beta V_{k+1} e_{1}\right\|=\|\underbrace{H_{k} y_{k}-\beta e_{1}}_{\text {size } k}\|
$$

Then solve

$$
\begin{array}{ccc}
\min _{y}\left\|H_{k} y-\beta e_{1}\right\| \rightarrow y_{k} & \text { or } & \text { solve }_{y} \\
H_{k}^{\square} y=\beta e_{1} \rightarrow y_{k} \\
\left\|\left\|H_{k}\right\|-\mid\right\| & \text { or } & H_{k}^{\square} \mid=1 \\
\text { (minimum residual) } & & \text { (Galerkin) }
\end{array}
$$

(negligeable cost...)

GMRES for $A x=b(4)$

How to do that?
3. Test convergence: terminate if

$$
\left\|H_{k} y_{k}-\beta e_{1}\right\| \leq \epsilon_{A} \quad \text { or } \quad \frac{\left\|H_{k} y_{k}-\beta e_{1}\right\|}{\left\|H_{k}\right\|\left\|y_{k}\right\|+\beta} \leq \epsilon_{R}
$$

4. Reconstruct solution in \mathbb{R}^{n} :

$$
x_{k}=V_{k} y_{y}
$$

GMRES, FOM, MINRES and CG for $A x=b$

$$
\left\{\left\|r_{k}\right\|\right\} \text { decreases monotonically, where } r_{k}=A V_{k} y_{k}-b
$$

(GMRES)

$$
f_{k}=y_{k}^{T} V_{k}^{T} A V_{k} y_{k}-b^{T} V_{k} y_{k} \text { decreases monotonically }
$$

(FOM)

- Can be extended to exploit symmetry \Rightarrow MINRES, CG
(in exact arithmetic)
- Performs well in practice, but high storage cost $\left(V_{k}\right)$.

The standard GMRES algorithm

$s=\operatorname{GMRES}(K, L, b)$

(1) Define $\beta_{1}=\|b\|$ and $v_{1}=b / \beta_{1}$.
(2) For $k=1, \ldots, m$,
(1) $w_{k}=K^{\top} L v_{k}$
(2) for $i=1, \ldots, k$,
(1) $H_{i, k}=v_{i}^{\top} w_{k}$
(2) $w_{k} \leftarrow w_{k}-H_{i, k} v_{i}$
(3) $H_{k, k} \leftarrow H_{k, k}+\gamma$,
(1) $\beta_{k+1}=H_{k+1, k}=\left\|w_{k}\right\|$,
(0) $v_{k+1}=w_{k} / \beta_{k+1}$,

- $y_{k}=\arg \min _{y}\left\|H y-\beta_{1} e_{1}\right\|$,
- if $\left\|H y_{k}-\beta_{1} e_{1}\right\|<\epsilon$, break.
(3) Return $s=V_{k} y_{k}$.

Range-space GMRES: the main idea

Return to the case of interest where

$$
A=\gamma I_{n}+K^{T} L \quad \text { and } \quad b=K^{\top} d
$$

Observe that

$$
\begin{aligned}
& \operatorname{span}_{i=0, \ldots, k-1}\left[\left(\gamma I_{n}+K^{T} L\right)^{i} b\right]=\operatorname{span}_{i=0, \ldots, k-1}\left[\left(K^{T} L\right)^{i} b\right] \\
& \begin{aligned}
\mathcal{K}_{k}\left(\gamma I_{n}+K^{T} L, b\right) & =\operatorname{span}\left(b, K^{T} L b, \ldots,\left(K^{T} L\right)^{k-1} b\right) \\
& =\operatorname{span}\left(K^{T} d, K^{T} L K^{T} d, \ldots,\left(K^{T} L\right)^{k-1} K^{T} d\right) \\
& =K^{T} \operatorname{span}\left(d, L K^{T} d, \ldots,\left(L K^{T}\right)^{k-1} d\right)
\end{aligned}
\end{aligned}
$$

$$
\mathcal{K}_{k}\left(\gamma I_{n}+K^{T} L, b\right)=K^{T} \mathcal{K}_{k}\left(L K^{T}, d\right)
$$

The range-space GMRES (1)

Main objectives

- all vectors now of size m ! Factor K^{T} in the algorithm $\left(v=K^{T} \hat{v}\right)$
- good variational properties maintained
- need to compute norms in \mathbb{R}^{n} :

$$
\|v\|^{2}=\left\|K^{T} \hat{v}\right\|^{2}=\hat{v}^{\top} \underbrace{K K^{\top} \hat{v}}_{\hat{z}}=\hat{v}^{\top} \hat{z}
$$

- store \hat{V}_{k} and \hat{Z}_{k} (but of size m)
- additional product by K to compute $\left\|v_{k}\right\| \ldots$

No free lunch. . . for the unsymmetric case

The range-space GMRES (2)

$s=\operatorname{RSGMR0}(K, L, d)$

(1) Define $p_{1}=K^{T} d, \quad \hat{z}_{1}=K p_{1}$,
(2) Set $\beta_{1}=\sqrt{d^{T} \hat{z}_{1}}, \quad \hat{v}_{1}=d / \beta_{1} \quad \hat{z}_{1} \leftarrow \hat{z}_{1} / \beta_{1}$ and $p_{1} \leftarrow p_{0} / \beta_{1}$.
(3) For $k=1, \ldots, m$,
(1) $\hat{w}_{k}=L p_{k}$
(2) for $i=1, \ldots, k$,
(1) $H_{i, k}=\hat{z}_{i}^{\top} \hat{w}_{k}$
(2) $\hat{w}_{k} \leftarrow \hat{w}_{k}-H_{i, k} \hat{v}_{i}$
(3) $H_{k, k} \leftarrow H_{k, k}+\gamma$,

- $\quad p_{k+1}=K^{\top} \hat{w}_{k}, \quad \hat{z}_{k+1}=K p_{k}, \quad \beta_{k+1}=H_{k+1, k}=\sqrt{\hat{z}_{k+1}^{T} \hat{w}_{k}}$,
© $\hat{v}_{k+1} \leftarrow \hat{w}_{k} / \beta_{k+1}, \quad \hat{z}_{k+1} \leftarrow \hat{z}_{k} / \beta_{k+1,}, \quad p_{k+1} \leftarrow p_{k} / H_{k+1, k}$,
- $y_{k}=\arg \min _{y}\left\|H y-\beta_{1} e_{1}\right\|$,
- if $\left\|H y_{k}-\beta_{1} e_{1}\right\|<\epsilon$, break.
(9) Return $s=K^{T} \hat{V}_{k} y_{k}$.

If $b \notin \operatorname{range}\left(K^{\top}\right) \ldots$

- change $K($ and $L)$!

$$
\bar{K}=\left[\begin{array}{c}
K \\
b^{T}
\end{array}\right] \quad \text { and } \quad \bar{L}=\left[\begin{array}{c}
L \\
0^{T}
\end{array}\right]
$$

and

$$
\bar{K}^{T} \bar{L}=K^{T} L \text { with } \bar{K}^{T} e_{m+1}=b
$$

- vectors of size $m+1$.

The range-space GMRES (4)

$s=\operatorname{RSGMR}(K, L, b)$

(1) Define $\beta_{1}=\|b\|, \quad p_{1}=b, \quad u=K b, \quad \hat{z}_{1}=u / \beta_{1}$, and $\hat{v}_{1}=e_{m+1} / \beta_{1}$.
(2) For $k=1, \ldots, m+1$,

- $\hat{w}_{k}^{T}=\left[\left(L p_{k}\right)^{T} 0\right], \quad \hat{w}_{k} \leftarrow \hat{w}_{k} / \beta_{k}$,
(1) for $i=1, \ldots, k$,
(1) $H_{i, k}=\left[\hat{z}_{i}^{T} 0\right] \hat{w}_{k}$
(2) $\hat{w}_{k} \leftarrow \hat{w}_{k}-H_{i, k} \hat{v}_{i}$
(3) $H_{k, k} \leftarrow H_{k, k}+\gamma$,
(1) $p_{k+1}=\left[K^{\top} b\right] \hat{w}_{k}, \quad \hat{z}_{k+1}=K p_{k+1}, \quad \zeta_{k+1}=\left[u^{\top} \beta_{1}^{2}\right] \hat{w}_{k}$,
(-) $\beta_{k+1}=H_{k+1, k}=\sqrt{\left[\hat{z}_{k+1}^{T} \zeta_{k+1}\right] \hat{w}_{k}}$,
(0) $\hat{v}_{k+1} \leftarrow \hat{w}_{k} / \beta_{k+1}, \quad \hat{z}_{k+1} \leftarrow \hat{z}_{k} / \beta_{k+1}$,
- $y_{k}=\arg \min _{y}\left\|H y-\beta_{1} e_{1}\right\|$,
(8) if $\left\|H y_{k}-\beta_{1} e_{1}\right\|<\epsilon$, break.
(3) Return $s=\left[K^{T} b\right] \hat{V}_{k} y_{k}$.

Full- vs range-space Krylov methods

At iteration k :

	GMRES	RSGMR
storage	$n(k+1)+k(k+3) / 2$	$n+(2 m+1) k+k(k+3) / 2$
internal flops	$4 n k+3 n+[\mathrm{sol}]$	$4 m k+7 m+[\mathrm{sol}]$
products by	K^{T}, L	K^{T}, K, L
	FOM (sym)	RSFOM (sym)
storage	$n(k+1)+k(k+3) / 2$	$(2 m+1) k+k(k+3) / 2$
internal flops	$4 n k+3 n+[\mathrm{sol}]$	$4 m k+6 m+[\mathrm{sol}]$
products by	K^{T}, K	K^{T}, K

Can we reduce cost further?

Inexact products: the context

Possible answer: inexact matrix-vector products
(Simoncini and Szyld, van den Eshof and Sleipen, Giraud, Gratton and Langou, ...)
Motivations:

- stability wrt roundoff errors
(remember iterates of RSGMR belong to range $\left(K^{T}\right)$!)
- allow cheap products (truncated B^{-1}, R^{-1}, simplified models,...)

Two error models for the result of $p \approx A v$:
(1) Backward:

$$
p=(A+E) v \quad \text { with } \quad\|E\| \leq \tau\|A\|
$$

(2) Forward:

$$
p=A v+e \quad \text { with } \quad\|e\| \leq \tau\|A v\| .
$$

Inexact products: results for the backward error model

Define

$$
\begin{gathered}
q_{k}=H_{k} y_{k}-\beta e_{1}, \quad G=\max [\|K\|,\|L\|] \quad \omega_{k}=\max _{1, \ldots, k}\left\|\hat{v}_{i}\right\| \\
\kappa(K)=\text { condition number of } K \\
(\ldots \text { after some analysis. } \ldots)
\end{gathered}
$$

Assume the backward error model. Then

$$
\begin{aligned}
&\left\|r_{k}\right\| \leq \sqrt{2(k+1)}\left\|q_{k}\right\| \\
& \quad+\|K\| \omega_{k}\left[\tau_{*} \gamma \sqrt{k}\left\|y_{k}\right\|+4 G^{2} \sum_{i=1}^{k}\left|\left[y_{k}\right]_{i}\right| \tau_{i}\right] \\
& \\
& \leq \sqrt{2(k+1)}\left[\left\|q_{k}\right\|+\tau_{\max } \kappa(K)\left(\gamma+4 G^{2}\right)\left\|y_{k}\right\|\right] .
\end{aligned}
$$

Inexact products: results for the forward error model

Assume the forward error model. Then

$$
\begin{aligned}
\left\|r_{k}\right\| & \leq \sqrt{2(k+1)}\left\|q_{k}\right\|+\sqrt{2}\left[\tau_{*} \gamma \sqrt{k}\left\|y_{k}\right\|+4 G\|K\| \sum_{i=1}^{k}\left|\left[y_{k}\right]_{i}\right| \tau_{i}\right] \\
& \leq \sqrt{2(k+1)}\left[\left\|q_{k}\right\|+\tau_{\max }(\gamma+4 G\|K\|)\left\|y_{k}\right\|\right]
\end{aligned}
$$

Note in both sets of bounds:

- first of these bounds allow for variable accuracy requirements
- special role of τ_{*}

CG with inexact products

Is CG a reasonable framework for inexact products?

Comparing $\left\|r_{k}\right\| /\left(\|A\|\left\|s_{*}\right\|\right)$ for FOM, CG with reorthog and CG for exact(left) and inexact (right) products $\left(\tau=10^{-9}, \kappa \approx 10^{6}\right)$

RSGMR and the error models (2)

Is the error model important?

$$
\left(\epsilon=10^{-5}, \kappa \approx 10^{2}\right)
$$

Backward error model

Forward error model (normalized $\left\|r_{k}\right\|$, normalized $\left\|q_{k}\right\|$, accuracy threshold τ)

RSGMR and the error models (2)

Yes, it can definitely make a difference

$$
\left(\epsilon=10^{-5}, \kappa \approx 10^{9}\right)
$$

Backward error model

Forward error model (normalized $\left\|r_{k}\right\|$, normalized $\left\|q_{k}\right\|$, accuracy threshold τ)

Fixed vs variable accuracy thresholds (1)

Can we use variable accuracy thresholds efficiently? $\quad\left(\epsilon=10^{-5}, \kappa \approx 10^{2}\right)$

Fixed τ

$$
\tau \approx 1 /\left\|q_{k}\right\|
$$

(normalized $\left\|r_{k}\right\|$, normalized $\left\|q_{k}\right\|$, accuracy threshold τ)

Fixed vs variable accuracy thresholds (2)

Maybe. .., not obvious.

Fixed τ

$$
\left(\epsilon=10^{-5}, \kappa \approx 10^{9}\right)
$$

(normalized $\left\|r_{k}\right\|$, normalized $\left\|q_{k}\right\|$, accuracy threshold τ)

Conclusions

- Range space methods may be designed to gain from low rank
- Further gains may be obtained from inexact products
- Formal bounds on the residual norms are available in this context
- Forward error modelling gives more flexibility than backward
- Many open questions ... but very interesting
- Opens further doors for algorithm design:
- efficiently spending one's "inaccuracy budget"
- short recurrence methods
- inexact full-space methods using forward error(?)
- ...
- True application: a real challenge (but we are working on it!)

Many thanks for your attention!

