Understanding the Immune System Using Optimization and Control

Shlomo Ta'asan Carnegie Mellon University shlomo@cmu.edu

Advanced Methods and Perspectives in nonlinear Optimization and Control. ENSIACET, Toulouse, February 3-5, 2010

Part I: Control & Optimization in Critical Care Medicine (w/ Pinsky & Hravnak)

• Small dimensional system - complex dynamics

Part II: Understanding The Immune System in Infectious Diseases (CMPI)

• Huge dimensional system - simple dynamics

Shock

A physiological state with significant, systemic reduction in tissue perfusion \rightarrow tissue injury.

Four Profiles

Hypovolemic: Decreased preload->small ventricular end-diastolic volumes -> inadequate cardiac generation of pressure and flow

Septic: release of inflammatory mediators

Cardiogenic: Intrinsic abnormality of heart -> inability to deliver blood into the vasculature with adequate power

Neurogenic :Loss of autonomic innervation of the cardiovascular system

Hemodynamic Profiles

	<u>PCWP</u>	<u>CVP</u>	<u>CO/CI</u>	<u>SVR/I</u>
Hypovolemic	Low	Low	Low	High
Cardiogenic	High	High	Low	High
Inflammatory	Low / N	Low/N	High	Low
Neurogenic	Low	Low	Low	Low

PCWP: Pulmonary capillary wedge pressure -indirect estimate of left atrial pressure

CVP: Central Venus pressure- a good approximation of right atrial pressure CO/CI: Cardiac Output, Cardiac Index

SVR/I: Systemic Vascular Resistance, Systemic Vascular Resistance Index

The four profiles represent different regions in phase space with possibly attractors of different shapes

Medical Issues

- Assessment of severity
- Stratifying the risk for complications
- Gauging the adequacy of therapy
- Estimating improved predictions if additional measurements were supplied
- Need to develop metrics to assess these challenges

Chaotic Dynamics

Mild changes in the attractor over time. Data: Hravnak & Pinsky

Chaotic Dynamics cont.

Significant changes in the attractor over time. Data: Hravnak & Pinsky

Mathematical Modeling

$\textbf{ODE} \quad dX/dt = V(X, \alpha) \quad X(t) \in I\!\!R^n$

Basic model : X(t) - physiological measurements, a - model parameters

Attractor is rough \rightarrow Add noise to smooth it. Noise may also be biologically relevant

SDE
$$dX_t = V(X_t, \alpha)dt + \sqrt{2\sigma}dW_t$$

•The attractor is stable under perturbation

Trajectories are sensitive to perturbation

The Attractor and its Measure

The biologically significant quantity is the measure satisfying the equation

$$div(V(x,\alpha)\rho) - \sigma \triangle \rho = 0$$

represent the fraction of time the trajectory spend in a small volume around x

Modeling a Patient -System Identification

- Find a model for the chaotic dynamics, i.e, V(x,a), using data ρ_d
- Define a distance $E(\alpha) = d^2(\rho(\alpha), \rho_d)$
- SysID problem

 $Min_{\alpha} E(\alpha) \quad \text{subject to} \\ div(V(x,\alpha)\rho(x,\alpha)) - \sigma \triangle \rho(x,\alpha) = 0$

The Choice of Distance

• Example

$$E(\alpha) = d^{2}(\rho(\alpha), \rho^{*}) = \|\rho(\alpha) - \rho^{*}\|_{2}^{2}$$

Not a good optimization problem: Functional is flat when the support of the two measures are far apart.

Dist(red, black) ~ Dist(red, blue)

Functional has flat regions!!

Choice of Distance cont.

• Example II:

 $E(\alpha) = d_w^2(\rho, \bar{\rho})$ 2-Wasserstein Distance

- A natural distance between measures.
- Functional is sensitive to changes in the measures even when their supports are far apart.
 Dist(red, black) ~ 3 Dist(red, blue)

2-Wasserstein Distance absolutely continuous case

$$d_W^2(\rho,\bar{\rho}) = \min_{\phi_{\#}\rho=\bar{\rho}} \int |\phi(x) - x|^2 \rho(x) dx$$

Or

$$\begin{aligned} d_W^2(\rho,\bar{\rho}) &= \min_{U,W} \int U(x)\rho(x) + \int W(y)\bar{\rho}(y)dy + const.\\ &U(x) + W(y) \leq x \cdot y \end{aligned}$$

Optimality conditions

$$\begin{aligned} U(x) + W(y) &= x \cdot y \quad \text{for} \quad \mu(x, y) > 0\\ \int \mu(x, y) dy &= \rho(x) \quad \int \mu(x, y) dx = \bar{\rho}(y) \quad \mu(x, y) \ge 0 \end{aligned}$$

Calculating Gradients

 $\label{eq:costfunction} {\it E}(\alpha) = d^2_{_W}(\rho,\rho^*)$

Optimization Problem

 $Min_{\alpha} E(\alpha) \quad \text{subject to} \\ div(V(x,\alpha)\rho(x,\alpha)) - \sigma \triangle \rho(x,\alpha) = 0 \\ \text{Perturbations:} \end{cases}$

$$\begin{array}{l} \alpha \to \alpha + \epsilon \tilde{\alpha} \\ V \to V + \epsilon V_{\alpha} \tilde{\alpha} \\ \rho \to \rho + \epsilon \tilde{\rho} \end{array} \qquad div(\tilde{V}\rho) + div(V\tilde{\rho}) - \sigma \triangle \tilde{\rho} = 0 \end{array}$$

Gradients Cont.

Lagrangian

$$\mathcal{L}(\rho,\lambda,\alpha) = d_W^2(\rho,\rho^*) + \int \lambda (div(V\rho) - \sigma \triangle \rho) dx$$
$$\frac{d}{d\epsilon} d_W^2(\rho + \epsilon \tilde{\rho},\rho^*)|_{\epsilon=0} = \int U(x)\tilde{\rho}(x) dx$$

$$-div(V\lambda) - \sigma \bigtriangleup \lambda = U$$
 Adjoint equation

$$\nabla_{\alpha} E(\alpha) = -\int \rho V_{\alpha} \nabla \lambda dx$$

The Gradient

Implementation Details

• Approximating $V(x,\alpha)$

$$V(x,\alpha) = \alpha_0 + \alpha_1 x + \alpha_2 x x^T$$

Multigrid Solver

- Variables: $\rho^h, \lambda^h, U^h, W^h, \alpha$
- FAS transfers between levels.
- Optimizing for $\alpha\,$ on coarsest levels, pointwise relations for $\rho^h, \lambda^h, U^h, W^h$

Primal-Dual Formulation

$$\min_{\alpha,U^{h},W^{h}} \int U^{h}(x)\rho^{h}(x)dx + \int W^{h}(y)\bar{\rho}^{h}(y)dy \quad \text{subject to}$$

$$div_{h}(V(\alpha)\rho^{h}) - \sigma \Delta_{h}\rho^{h} = 0 \quad \int \rho^{h}dx = \int \bar{\rho}^{h}dx$$

$$U^{h}(x) + W^{h}(y) \leq x \cdot y$$

Optimality conditions

$$div_{h}(V(\alpha)\rho^{h}) - \sigma \triangle_{h}\rho^{h} = 0 \qquad \int \rho^{h} dx = \int \bar{\rho}^{h} dx$$
$$-div_{h}(V\lambda^{h}) - \sigma \triangle_{h}\lambda^{h} = U \qquad \int \rho^{h}V_{\alpha}\nabla_{h}\lambda^{h} dx = 0$$
$$U^{h}(x) + W^{h}(y) = x \cdot y \quad \text{for} \quad \mu^{h}(x,y) > 0$$
$$\int \mu^{h}(x,y) dy = \rho^{h}(x) \qquad \int \mu^{h}(x,y) dx = \bar{\rho}^{h}(y) \quad \mu^{h}(x,y) \ge 0$$

Designing Treatment Using Control Theory

Medicine tells us that some ρ^* are 'good'. They characterize healthy people. Or that some regions in the phase space are 'bad' (Four profiles)

Biological parameters are implicit in $V(x, \alpha)$ A control problem: $E(\alpha) = d_W^2(\rho(\alpha), \rho^*)$

Treatment Design

 $Min_{\alpha} E(\alpha) \quad \text{subject to} \\ div(V(x,\alpha)\rho(x,\alpha)) - \sigma \triangle \rho(x,\alpha) = 0$

Additional Functions

The probability that we are in a 'bad' region A $\int_A \rho(x) dx$

Recall the four profiles (Hypovolemic, Cardiogenic Inflammatory, Neurogenic) - 'bad' regions of the phase space

 $\text{Enforcing constraints } \int_A \rho(x) dx \leq \eta$

Or modifying cost function

$$E(\alpha) = d_W^2(\rho(\alpha), \bar{\rho}) + \beta \int_A \rho(x) dx$$

Relating Physiological Measurements and Model Coefficients

Treatment affects dynamics parameters a.

 Hypovolemic : ABCs, IVF (crystalloid), Transfusion Stem ongoing Blood Loss
 Septic: ABCs, IVF, Blood cx, ABX, Drainage, pressors
 Cardiogenic : <u>CHF</u>- diuretics & vasodilators +/- pressors. <u>LV failure</u> - pressors, intra aortic balloon pump & ventricular assist device.
 Neurogenic: IVF, vasoactive medications if refractory

Need: α sensitivities with respect to all treatments

Medical Challenges and Mathematical Formulations

• Assessment of severity

W-distance from 'healthy' attractors

- Stratifying the risk for complications
 Probability to be in certain regions of phase space
- Gauging the adequacy of therapy Change of cost function with treatment
- Estimating Improved Predictions if additional measurements were supplied

Comparing higher dimensional models (more measurements) with lower dimensional ones

Understanding The Immune System in Infectious Diseases

NIH Biodefense Center for Modeling Pulmonary Immunity University of Pittsburgh **Carnegie Mellon** University of Michigan Penny Morel, PI Shlomo Ta'asan, co-PI Denise Kirschner Experiments Jerry Nau Emrah Diril Math Modeling Simeone Marino Ted Ross Ziv Bar-Joseph **Benoit Morel** Russ Salter Jason Ernst Joanne Flynn Takis Benos Statistical Analysis Shaun Mahony Panos Chrysanthis Bioinformatics Alex Labrinidis

The Immune System

• The Players:

Organs (handful), cells (~2 dozen), molecules (~2000), genes

The Pathogens

Viruses, Bacteria, Parasites, Fungi

- The State of the System: High dimension
- Its Purpose

Eradicate pathogens, tissue repair.

www.cancer.gov/cancertopics/understandingcancer/immunesystem

www.cancer.gov/cancertopics/understandingcancer/immunesystem

The Interactions

- Immune System Cells Can
 - Receive to a set of messages (R)
 - Transmit a set of messages (T)
 - May change the set R & T upon receiving $r \in R$
 - Secrete effector molecules (antibodies, toxins,..)
 - Damage tissue (secretion of toxins)
 - Repair tissue (secretion of growth factors)
 - Eradicate pathogens

An orchestra without a conductor!!

Modeling Approaches

Traditional Modeling

- Biological knowledge & hypotheses are translated into mathematics.
- The role of math is to refine our understanding (parameter ranges, ...).

System Identification Black-Box Modeling

- Experimental data with little or no explanation is given.
- A mathematical formulation is done to 'discover' the

System Identification Data Driven -Black Box Modeling

- Define a class of models
 - Linear, nonlinear, ...
- Find the model in this class that best fit the data.
- Important Features:

No biological knowledge is used! The meaning of data is insignificant!

SysID approach is now possible due to recent revolution in experimental techniques \rightarrow abundant data at multiple scales

Concentration

The Driving Questions:

How complex is the response?

- how many variables are needed?
- how complex is the dynamics?

How to control it?

- which interventions (variables) are most effective?
- how to apply these interventions?
- vaccination:

what parameters does vaccination change?

Very different from traditional approach: assuming no prior biological knowledge

Understanding Response

- Dynamics on high dimensional manifold
- Building Approximations
 - Approximate space affine variety
 - Approximate dynamics linear, nonlinear
- Inverse problems
 - Data \rightarrow Models \rightarrow Intervention

System Identification Approach

Assumptions

• The immune system can be approximated as a large set of nonlinear equations

$$\frac{dX}{dt} = f(X) \qquad X = (x_1, \cdots, x_N)$$

• The immune system is in steady state in the absence of challenges

$$f(X) = 0 \qquad X = (x_1, \cdots, x_N)$$

• Important information about the system can be obtained from studying small perturbations.

Small perturbations of the immune system satisfy linear systems of equation

$$\left| \frac{dY}{dt} = AY \quad Y = (y_1, \cdots, y_N) \quad y$$
-equation

Incomplete Information

Measurements of the system are only partial !!

$$V = (v_1, \cdots, v_K) \qquad K \ll N$$

V(t) need not satisfy a similar equation to Y(t). In general, the model for V(t) is

$$\frac{d^{n}V}{dt^{n}} = A_{1}\frac{d^{n-1}Y}{dt^{n-1}}V + A_{2}\frac{d^{n-1}V}{dt^{n-1}}V + \dots + A_{n}V$$

The Modeling Problem: Find the Coefficients A1, ... An

The Approach: Find the coefficients that fit the data the best.

Continuous Time Models

Higher order models are also possible.

Objective: Construct a model from measurements of X at different times.

Continuous Time Models -Intervention Design

Objective: Design a drug mixture B and its administration u(t), that is 'best' for ...

Discrete Time Models

Equal Time Intervals \rightarrow Can use discrete models

 X_n The state of the animal at time n = 0,1,2,...

Higher order models are also possible.

Objective: Construct a model from measurements of X at different times.

Discrete Time Models : Intervention Design

$$u_n$$
 Drug amount at time n = ,1,2,...

B The drugs mixture

$$X_n = AX_{n-1} + Bu_{n-1}$$

 $X_{n} = A_{1}X_{n-1} + A_{2}X_{n-2} + Bu_{n-1}$

First Order Model

Second Order Model

Objective: Design a drug mixture B, and its administration u_n for a 'best' outcome ...

Formulation Summary

Intervention Design

Model
$$x_n = Ax_{n-1} + Bu_{n-1}$$

Timing and amount Given B , (drug mixture) find 'best' u_n using control theory

Drug design: Use optimization to find best B:

$$\min_{B} J(x(B, u), u(B))$$

Nonlinear Data Driven Models

(1)

Quadratic nonlinearities $dX/dt = L X + N X X^{T}$

Or discrete time models

$$X_{n+1} = L X_n + N X_n X_n^{T}$$
 (2)

Min_{L,N} $\sum || X_n - X_n^* ||^2$ subject to (2)

Modeling Influenza A in Adult Mice

Mo IL-10 (36) 0 1200 Mo TNF-a (6) 0 0 Mo IL-1a (37) Mo IL-12(p40) (57) 0 1000 Mo IL-12(p70) (50) 0 0 Mo MIP-1b (59) Weight Loss 800 0 600 400 00 200 x 10⁵ Influenza-A Adult - 1st order model (Set 3) Virus 0 0 2.5 2 1.5 1 0.5 00 5 10 15 20 25 Processed Data(o) vs Model(-) Error = 7.55%

Influenza-A Adult - 1st order model (Set 2)

Modeling with Limited Data - case I

Modeling with Limited Data - case II

Intervention Design

Model
$$x_n = Ax_{n-1} + Bu_{n-1}$$

Timing & Given B , (drug mixture) find 'best' u_n using Amount control theory

Drug design: Use optimization to find best B:

 $\min_{B \in C} J(x(B, u), u(B))$

Intervention Design Anne Yust Drug Mixture

Attempt to control mouse weight loss (illness indicator) + virus load

Elderly Mice

Modeling Francisella Tularensis in Mice

• Schu S4 strain vs. LVS

FT Intervention Design

- Using Control theory. IFN γ intervention at day 1 of infection

Thank You