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Part I: Control & Optimization in Critical 
Care Medicine (w/ Pinsky & Hravnak)

• Small dimensional system – complex dynamics 

Part II: Understanding The Immune Part II: Understanding The Immune 
System in Infectious Diseases (CMPI)

• Huge dimensional system – simple dynamics 



Shock

A physiological state with significant, systemic 
reduction in tissue perfusion � tissue injury.

Four Profiles
Hypovolemic: Decreased preload->small ventricular end-diastolic Hypovolemic: Decreased preload->small ventricular end-diastolic 

volumes -> inadequate cardiac generation of pressure and flow

Septic: release of inflammatory mediators

Cardiogenic: Intrinsic abnormality of heart -> inability to deliver 
blood into the vasculature with adequate power

Neurogenic :Loss of autonomic innervation of the cardiovascular 
system



Hemodynamic Profiles
PCWP CVP CO/CI SVR/I

Hypovolemic Low Low Low High

Cardiogenic High High Low High

Inflammatory Low / N Low/N High Low 

Neurogenic Low Low Low LowNeurogenic Low Low Low Low

PCWP: Pulmonary capillary wedge pressure -indirect estimate of left atrial 
pressure
CVP: Central Venus pressure- a good approximation of right atrial pressure
CO/CI: Cardiac Output, Cardiac Index
SVR/I: Systemic Vascular Resistance, Systemic Vascular Resistance Index

The four profiles represent different regions in phase space
with possibly attractors of different shapes



Medical Issues

• Assessment of severity
• Stratifying the risk for complications
• Gauging the adequacy of therapy
• Estimating improved predictions if additional 

measurements were supplied
• Estimating improved predictions if additional 

measurements were supplied

• Need to develop metrics to assess these 
challenges



Chaotic Dynamics

Mild changes in the attractor over time. Data: Hravnak & Pinsky



Chaotic Dynamics cont.

Significant changes in the attractor over time. Data: Hravnak & Pinsky



Mathematical Modeling

dX/dt = V (X,α) X(t) ∈ IRn

Basic model : X(t) - physiological measurements, 
α - model parameters

ODE

Attractor is rough � Add noise to smooth it. 
Noise may also be biologically relevant

dXt = V (Xt, α)dt+
√
2σdWt

•The attractor is stable under perturbation
• Trajectories are sensitive to perturbation

SDE



The Attractor and its Measure 

The  biologically significant quantity is the measure           
satisfying the equation

represent the fraction of time the     

div(V (x, α)ρ)− σ�ρ = 0

ρ(x)dx represent the fraction of time the     
trajectory spend in a small volume around x 

x.   

ρ(x)dx



Modeling a Patient –
System Identification

• Find a model for the chaotic dynamics, i.e, 
V(x,α), using data              

• Define a distance

• SysID problem
E(α) = d2(ρ(α), ρd)

ρd

• SysID problem

Min α E(α) subject to

div(V (x, α)ρ(x, α))− σ�ρ(x, α) = 0



The Choice of Distance

• Example   

E(α) = d2(ρ(α), ρ∗) = ‖ρ(α)− ρ∗‖2
2

Not a good optimization problem: Functional is flat 
when the support of the two measures are far apart.
Not a good optimization problem: Functional is flat 
when the support of the two measures are far apart.
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Choice of Distance cont.

• Example II: 

E(α) = d2
W
(ρ, ρ̄) 2-Wasserstein Distance

• A natural distance between measures. 

• Functional is sensitive to changes

in the measures even when their

supports are far apart.

Dist(red, black) ~ 3 Dist(red,blue) 

• A natural distance between measures. 
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2-Wasserstein Distance
absolutely continuous case

d2W (ρ, ρ̄) = min

∫
U(x)ρ(x) +

∫
W (y)ρ̄(y)dy + const.

d2W (ρ, ρ̄) = min
φ#ρ=ρ̄

∫
|φ(x)− x|2ρ(x)dx

Or

dW (ρ, ρ̄) = min
U,W

∫
U(x)ρ(x) +

∫
W (y)ρ̄(y)dy + const.

U(x) +W (y) ≤ x·y

∫
µ(x, y)dy = ρ(x)

∫
µ(x, y)dx = ρ̄(y) µ(x, y) ≥ 0

U(x) +W (y) = x·y for µ(x, y) > 0

Optimality conditions



Calculating Gradients

Min α E(α) subject to

E(α) = d2
W
(ρ, ρ∗)Cost function

Optimization Problem

α→ α+ εα̃
V → V + εVαα̃
ρ→ ρ+ ερ̃ div(Ṽ ρ) + div(V ρ̃)− σ�ρ̃ = 0

Min α E(α) subject to

div(V (x, α)ρ(x, α))− σ�ρ(x, α) = 0

Perturbations:



Gradients Cont. 

Lagrangian

L(ρ, λ, α) = d2
W
(ρ, ρ∗) +

∫
λ(div(V ρ)− σ�ρ)dx

d
∫

d

dε
d2
W
(ρ+ ερ̃, ρ∗)|ε=0 =

∫
U(x)ρ̃(x)dx

−div(V λ)− σ�λ = U

∇αE(α) = −
∫

ρVα∇λdx The Gradient

Adjoint equation



Implementation Details

• Approximating V(x,α)

Multigrid Solver

V (x, α) = α0 + α1x+ α2 xx
T

Multigrid Solver

• Variables:

• FAS transfers between levels. 

• Optimizing for       on coarsest levels, pointwise
relations for 

ρh, λh, Uh,W h, α

α
ρh, λh, Uh,W h



Primal-Dual Formulation
min

α,Uh,Wh

∫
Uh(x)ρh(x)dx+

∫
W h(y)ρ̄h(y)dy subject to

divh(V (α)ρ
h)− σ�hρ

h = 0

Uh(x) +W h(y) ≤ x·y

∫
ρhdx =

∫
ρ̄hdx

Optimality conditions 

∫
µh(x, y)dy = ρh(x)

∫
µh(x, y)dx = ρ̄h(y) µh(x, y) ≥ 0

Optimality conditions 

Uh(x) +W h(y) = x·y for µh(x, y) > 0

divh(V (α)ρ
h)− σ�hρ

h = 0

∫
ρhdx =

∫
ρ̄hdx

−divh(V λh)− σ�hλ
h = U

∫
ρhVα∇hλhdx = 0



Designing Treatment 
Using Control Theory

Medicine tells us that some          are ‘good’. 

They characterize healthy people. Or that some regions 
in the phase space are ‘bad’ (Four profiles)

Biological parameters are implicit in

ρ∗

Biological parameters are implicit in

A control problem:  

Treatment Design

V (x, α)

Min α E(α) subject to

div(V (x, α)ρ(x, α))− σ�ρ(x, α) = 0

E(α) = d2W (ρ(α), ρ
∗)



Additional Functions
∫

A

ρ(x)dxThe probability that we are in a ‘bad’ region A

Recall the four profiles (Hypovolemic, Cardiogenic
Inflammatory, Neurogenic)  – ‘bad’ regions of the 
phase space phase space 

∫

A

ρ(x)dx ≤ ηEnforcing constraints

Or modifying cost function

E(α) = d2
W
(ρ(α), ρ̄) + β

∫

A

ρ(x)dx



Relating Physiological Measurements 
and Model Coefficients

Treatment affects dynamics parameters α.

Hypovolemic : ABCs, IVF (crystalloid), Transfusion Stem ongoing 
Blood Loss

Septic:  ABCs, IVF, Blood cx, ABX, Drainage, pressorsSeptic:  ABCs, IVF, Blood cx, ABX, Drainage, pressors
Cardiogenic : CHF– diuretics & vasodilators +/- pressors.

LV failure – pressors, intra aortic balloon 
pump & ventricular assist device.

Neurogenic: IVF, vasoactive medications if refractory

Need: α sensitivities with respect to all treatments

Treatment T Change in α

Patient



Medical Challenges and
Mathematical Formulations 

• Assessment of severity
W-distance from ‘healthy’ attractors

• Stratifying the risk for complications
Probability to be in certain regions of phase spaceProbability to be in certain regions of phase space

• Gauging the adequacy of therapy
Change of cost function with treatment

• Estimating Improved Predictions if additional 
measurements were supplied

Comparing higher dimensional models (more 
measurements) with lower dimensional ones



Understanding The Immune 
System in Infectious DiseasesSystem in Infectious Diseases
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The Immune System

• The Players: 

Organs (handful), cells (~2 dozen), molecules 
(~2000),  genes

• The Pathogens• The Pathogens
Viruses, Bacteria, Parasites, Fungi

• The State of the System: 
High dimension

• Its Purpose
Eradicate pathogens, tissue repair. 



Tonsils and adenoids

Lymph nodes

Thymus

Lymphatic vessels

Lymph nodes

The Organs

Lymph nodes

Bone marrow

Appendix

Lymphatic vessels

Lymph nodes

Peyer’s patches

Spleen

www.cancer.gov/cancertopics/understandingcancer/immunesystem



The Cells

www.cancer.gov/cancertopics/understandingcancer/immunesystem



Paracortex

Incoming lymphatic vessel

Follicle

Lymph Node (where interactions take place)

Vein

Cortex

Paracortex

Outgoing lymphatic vessel

Artery

Medulla

www.cancer.gov/cancertopics/understandingcancer/immunesystem



The Interactions

• Immune System Cells Can
– Receive to a set of messages (R)
– Transmit a set of messages (T)
– May change the set R & T upon receiving  
– Secrete effector molecules (antibodies, 

r ∈ R
– Secrete effector molecules (antibodies, 

toxins,..)
– Damage tissue (secretion of  toxins)
– Repair tissue (secretion of growth factors)
– Eradicate pathogens 

An orchestra without a conductor!!



Modeling Approaches 

Traditional Modeling

• Biological knowledge & 
hypotheses are translated 
into mathematics. 

• The role of math is to 
refine our understanding 

System Identification Black-
Box Modeling

• Experimental data with 
little or no explanation is 
given. 

refine our understanding 

(parameter ranges, …). • A mathematical formulation 
is done to ‘discover’ the 
biology.

Graphical Models

Differential Equations

Stochastic Models



System Identification Data Driven
-Black Box Modeling

• Define a class of models 
– Linear, nonlinear, …

• Find the model in this class that best 

fit the data. fit the data. 

• Important Features: 

No biological knowledge is used!

The meaning of data is insignificant!

SysID approach is now possible due to recent 
revolution in experimental techniques ����
abundant data at multiple scales



The Driving Questions:

How complex is the response?
- how many variables are needed? 
- how complex is the dynamics?

How to control it?
- which interventions (variables) are most 

effective?
- which interventions (variables) are most 

effective?
- how to apply these interventions? 
- vaccination:

what parameters does vaccination 
change?

Very different from traditional approach: assuming no prior 
biological knowledge



Understanding Response

• Dynamics on high dimensional manifold

• Building Approximations

– Approximate space – affine variety

– Approximate dynamics – linear, nonlinear– Approximate dynamics – linear, nonlinear

• Inverse problems

– Data � Models � Intervention



System Identification Approach

• The immune system can be approximated as a 
large set of nonlinear equations

• The immune system is in steady state in the 
absence of challenges

• Important information about the system can be 
obtained from studying small perturbations. 

Assumptions

obtained from studying small perturbations. 

Small perturbations of the immune system satisfy linear systems of 
equation

y-equation



Incomplete Information

Measurements of the system are only partial !!  

V(t) need not satisfy a similar equation to Y(t).

In general, the model for V(t) is

The Modeling Problem: Find the Coefficients A1, … An

The Approach: Find the coefficients that fit the data the best.



Continuous Time Models
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Objective: Construct a model from measurements of 
X at different times. 

Higher order models are also possible. 



Continuous Time Models –

Intervention Design
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Discrete Time Models
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X at different times. 

Higher order models are also possible. 



Discrete Time Models :
Intervention Design
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Formulation Summary

Formulation:

Solution

Model Construction

Intervention DesignIntervention Design

Model

Given       , (drug mixture) find ‘best’          using 
control theory 

Drug design: Use optimization to find best        :

Timing and amount



Nonlinear Data Driven Models

Quadratic nonlinearities 

dX/dt = L X + N X XT (1)

Or discrete time modelsOr discrete time models

Xn+1 = L Xn + N Xn Xn
T      (2)

Min L,N  ∑ ||  Xn – Xn* ||2   subject to (2)



Modeling Influenza A in Adult Mice
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Modeling with Limited Data - case I

Modeling with only 7 Cytokines

1st order model - insufficient

2nd order model ok

3rd order model – very good
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Modeling with Limited Data - case II
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Intervention Design

Model

Given       , (drug mixture) find ‘best’          using Timing & Given       , (drug mixture) find ‘best’          using 
control theory 

Drug design: Use optimization to find best        :

Timing & 
Amount



Intervention Design 
Drug Mixture

Elderly Mice

Attempt to control mouse weight loss (illness indicator) + virus load
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Modeling Francisella Tularensis in Mice

• Schu S4 strain vs. LVS
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FT Intervention Design

• Using Control theory. IFNγ intervention at day 1 of 
infection
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Thank You


