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QPBLUR: An active-set convex QP solver based on regularized KKT systems

SNOPT obtains search directions from convex QP subproblems,
currently solved by SQOPT. For problems with many degrees of
freedom, the nullspace active-set method of SQOPT becomes
inefficient.

QPBLUR is an alternative QP solver intended for use within
SNOPT. Primal and dual regularization ensures that the KKT
system for any active set is nonsingular.

A single-phase active-set method is possible. Warm starts can
proceed from any active set. Block-LU updates of the KKT factors
as in QPBLU (Hanh Huynh’s PhD thesis 2008) allow use of
packages such as LUSOL, MA57, PARDISO, SuperLU, or
UMFPACK.

QPBLUR is effectively a penalty method with bounds. QPBCL
(bound-constrained Lagrangian) includes a Lagrangian term to
satisfy Ax = b more accurately.

Supported by the Office of Naval Research and AHPCRC
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Motivation
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Why another QP solver?

We would like a sparse QP solver that

can handle a large number of free variables

can warm-start efficiently (⇒ active-set method)

Such a solver would be useful

inside SQP methods (like SNOPT)

for related QPs (e.g. model predictive control)
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SNOPT: Large-scale NLP

Nonlinear objective & constraints, sparse Jacobian

SQP method solves a sequence of QP subproblems:

min
x

cTx + 1
2xTHx

Ax = b, l ≤ x ≤ u,

where c,H, A, b change less and less

H = GTG is a limited-memory BFGS approximation

G = D(I + s1v
T
1 )(I + s2v

T
2 ) . . .

Currently use SQOPT (active-set null-space method)
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SQOPT: Large-scale convex QP
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SQOPT

min cTx + 1
2xTHx st Ax = b, l ≤ x ≤ u

Reduced-Hessian method

ZTHZ∆xS = −ZTg

ZTHZ = RTR exactly

ZTHZ ≈ RTR quasi-Newton

CG if dof > 2000
LUSOL provides reliable Basis Repair

free variables fixed variables

APk = Ak Nk

OK if Ak is nearly square:
10000× 12000 or 100000× 102000

free variables fixed variables

APk = Ak Nk

For Ak 100000× 400000, we need a
QP solver based on KKT systems like QPA in GALAHAD

RTRA STAE Workshop Toulouse, Feb 3–5, 2010 7/34
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KKT system for current active set

Solve K0

(
∆xk

∆y

)
=

(
r1

r2

)

K0 =
Hk AT

k

Ak
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QPBLU

RTRA STAE Workshop Toulouse, Feb 3–5, 2010 9/34



Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results Refs

QPBLU (Thesis of Hanh Huynh 2008)

F90 convex QP solver based on block-LU updates of K

K0 =
(

Hk AT
k

Ak 0

)
= L0D0L

T
0 or L0U0

Uses black-box factorizer on K0

(LUSOL, MA57, PARDISO, SuperLU, UMFPACK)

Active-set method keeps K0 nonsingular in theory
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QPBLU block-LU updates

K0 =
(

Hk AT
k

Ak 0

)
= L0U0

To change active set (add/delete cols of Ak),
work with bordered system:

K0 V

V T E

=

 L0

ZT I

 U0 Y

C



Y , Z sparse, C small

Quasi-Newton updates to Hk handled same way

Singular K0 is a difficulty – need KKT repair
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QPBLUR: Large-scale QP with
Regularization
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QPBLUR (Thesis of Chris Maes 2010)

min
x,y

cTx + 1
2xTHx + 1

2δ‖x‖22 + 1
2µ‖y‖22

Ax + µy = b, l ≤ x ≤ u

δ and µ small

(
−(Hk + δI) AT

k

Ak µI

) (
∆xk

∆y

)
=

(
gk −AT

k y
0

)

Nonsingular for any active set (any active cols Ak)

Always feasible (no Phase 1)

Can use LUSOL, MA57, UMFPACK, . . . without change

Can use Hanh’s block-LU updates without change
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QPBLUR strategy

min
x,y

cTx + 1
2xTHx + 1

2δ‖x‖22 + 1
2µ‖y‖22

Ax + µy = b, l ≤ x ≤ u

Matlab implementation

Scale problem

Solve with δ, µ = 10−6, 10−8, 10−10, 10−12 opttol =
√

δ

Unscale

Solve with δ, µ = 10−8, 10−10, 10−12 opttol =
√

δ

Exit if small relative change in obj
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Numerical Results on 90 QP problems
(Meszaros set)
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KKT factorizations
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Accuracy of solutions
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QPBLUR pros and cons

min
x,y

cTx + 1
2
xTHx + 1

2
δxTx + 1

2
µyTy Ax + µy = b, l ≤ x ≤ u

Advantages

Warm starts (any x0, any working set)

Any black-box LU or LDLT solver
(preferably separate L/U solves and no refinement)

LU should never report singularity (no KKT repair)

Simple algorithm (strict convexity, always feasible, no primal
degeneracy)

Disadvantages

Large regularization: many itns from cold start

Tiny regularization: risks ill-conditioned KKT
(but so far so good)

RTRA STAE Workshop Toulouse, Feb 3–5, 2010 18/34
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Penalty vs Augmented Lagrangian
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Rethink QPBLUR

φ(x) ≡ cTx + 1
2xTHx + 1

2δ‖x‖22

Regularized QP

min
x,y

φ(x) + 1
2µ‖y‖22 Ax + µy = b, l ≤ x ≤ u

≡ quadratic penalty function:

min
`≤x≤u

φ(x) + 1
2ρ‖b−Ax‖22 (ρ = 1/µ)

Why not Augmented Lagrangian?:

min
`≤x≤u

φ(x)− ŷT (b−Ax) + 1
2ρ‖b−Ax‖22
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BCL method as in LANCELOT
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BCL Method (LANCELOT)

min φ(x) st c(x) = 0, ` ≤ x ≤ u

Bound-constrained augmented Lagrangian method

L(x, ŷ, ρ) = φ(x)− ŷT c(x) + 1
2ρ‖c(x)‖2

Subproblem: minx L(x, ŷ, ρ) st ` ≤ x ≤ u

Solve to get x̂ (optimality tol ω → 0)

If ‖c(x̂)‖ < η, update ŷ (feasibility tol η → 0)

Otherwise, increase ρ

Repeat
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Solve to get x̂ (optimality tol ω → 0)

If ‖c(x̂)‖ < η, update ŷ (feasibility tol η → 0)
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BCL Method for QP

min
x

φ(x) st Ax = b, ` ≤ x ≤ u

BCL subproblem

min
x, r

L(x, ŷ, ρ) = φ(x) + ŷT r + 1
2ρ‖r‖2

Ax + r = b, ` ≤ x ≤ u

Solve subproblem to get x̂, r̂ (optimality tol ω → 0)

If ‖r̂‖ < η, update ŷ (feasibility tol η → 0)

Otherwise, increase ρ

Repeat
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QPBCL
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QPBCL: Active-set method for convex QP

AP =
(
Ak Nk

)

(
−(Hk + δI) AT

k

Ak
1
ρI

) (
∆xk

∆y

)
=

(
gk −AT

k y
1
ρ(ŷ − y) + r

)
∆r = 1

ρ(y + ∆y − ŷ)− r

Same system as QPBLUR – just different rhs

Still single phase

Still use LUSOL, MA57, UMFPACK, . . .

Still use Hanh’s block-LU updates
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Numerical Results
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90 Meszaros QP problems

QPBCL solves with smaller penalty ρ (hence larger µ ≡ 1/ρ)
compared to QPBLUR
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Regularization parameter for 90 problems
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COPS 3.0 problems with many degrees of freedom

m n dof

dirichlet 42 8981 5355
henon 82 10801 9410
lane emden 82 19240 5414
minsurf 0 5000 4782

SNOPT/AMPL
Major iterations generate QPs, solved by SQOPT
QP data loaded into Matlab, solved by QPBCL

Compare SQOPT iterations and QPBCL iterations

There are 3 kinds of people: Those who can count, and those
who cannot.

— George Carlin
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Augmented Lagrangian methods for QP
Conn, Gould, and Toint (1992)
LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization
(Release A), Springer-Verlag

Nocedal and Wright (2006)
Chapter 17 of Numerical Optimization, Springer

M. P. Friedlander and S. Leyffer (2008)
Global and finite termination of a two-phase augmented Lagrangian filter
method for general QP, SISC 30

Philip Gill and Elizabeth Wong (2009–· · · )
Continuing Hanh’s f90 QPBLU for use in SNOPT
BCL approach for indefinite QP (2nd derivatives in SNOPT)

C. Kirches, H. G. Bock, J. P. Schlöder and S. Sager (2009)
A factorization with update procedures for a KKT matrix arising in direct
optimal control
Active-set method with block-structured KKT factorization
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Even convex QP isn’t easy

but conferences help us make progress

Merci beaucoup a tous

Iain Duff
Serge Gratton
Xavier Vasseur
Brigitte Yzel

STAE
RTRA

CERFACS
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