

QPBLUR: An active-set convex QP solver

Christopher Maes and Michael Saunders iCME, Stanford University

RTRA STAE Workshop

Advanced methods and perspectives in nonlinear optimisation and control Toulouse, France

SNOPT obtains search directions from convex QP subproblems, currently solved by SQOPT. For problems with many degrees of freedom, the nullspace active-set method of SQOPT becomes inefficient.

SNOPT obtains search directions from convex QP subproblems, currently solved by SQOPT. For problems with many degrees of freedom, the nullspace active-set method of SQOPT becomes inefficient.

QPBLUR is an alternative QP solver intended for use within SNOPT. Primal and dual regularization ensures that the KKT system for any active set is nonsingular.

SNOPT obtains search directions from convex QP subproblems, currently solved by SQOPT. For problems with many degrees of freedom, the nullspace active-set method of SQOPT becomes inefficient.

QPBLUR is an alternative QP solver intended for use within SNOPT. Primal and dual regularization ensures that the KKT system for any active set is nonsingular.

A single-phase active-set method is possible. Warm starts can proceed from any active set. Block-LU updates of the KKT factors as in QPBLU (Hanh Huynh's PhD thesis 2008) allow use of packages such as LUSOL, MA57, PARDISO, SuperLU, or UMFPACK.

SNOPT obtains search directions from convex QP subproblems, currently solved by SQOPT. For problems with many degrees of freedom, the nullspace active-set method of SQOPT becomes inefficient.

QPBLUR is an alternative QP solver intended for use within SNOPT. Primal and dual regularization ensures that the KKT system for any active set is nonsingular.

A single-phase active-set method is possible. Warm starts can proceed from any active set. Block-LU updates of the KKT factors as in QPBLU (Hanh Huynh's PhD thesis 2008) allow use of packages such as LUSOL, MA57, PARDISO, SuperLU, or UMFPACK.

QPBLUR is effectively a penalty method with bounds. QPBCL (bound-constrained Lagrangian) includes a Lagrangian term to satisfy Ax = b more accurately.

Supported by the Office of Naval Research and AHPCRC

Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results Refs

Motivation

Why another QP solver?

We would like a sparse QP solver that

- can handle a large number of free variables
- can warm-start efficiently (\Rightarrow active-set method)

Why another QP solver?

We would like a sparse QP solver that

- can handle a large number of free variables
- can warm-start efficiently (\Rightarrow active-set method)

Such a solver would be useful

- inside SQP methods (like SNOPT)
- for related QPs (e.g. model predictive control)

• Nonlinear objective & constraints, sparse Jacobian

SNOPT: Large-scale NLP

- Nonlinear objective & constraints, sparse Jacobian
- SQP method solves a sequence of QP subproblems:

$$\min_{x} \qquad c^{T}x + \frac{1}{2}x^{T}Hx$$
$$Ax = b, \qquad l \le x \le u,$$

where c, H, A, b change less and less

SNOPT: Large-scale NLP

- Nonlinear objective & constraints, sparse Jacobian
- SQP method solves a sequence of QP subproblems:

$$\min_{x} \qquad c^{T}x + \frac{1}{2}x^{T}Hx$$
$$Ax = b, \qquad l \le x \le u,$$

where c, H, A, b change less and less

• $H = G^T G$ is a limited-memory BFGS approximation

$$G = D(I + s_1 v_1^T)(I + s_2 v_2^T) \dots$$

SNOPT: Large-scale NLP

- Nonlinear objective & constraints, sparse Jacobian
- SQP method solves a sequence of QP subproblems:

$$\min_{x} \qquad c^{T}x + \frac{1}{2}x^{T}Hx$$
$$Ax = b, \qquad l \le x \le u,$$

where c, H, A, b change less and less

• $H = G^T G$ is a limited-memory BFGS approximation

$$G = D(I + s_1 v_1^T)(I + s_2 v_2^T) \dots$$

• Currently use SQOPT (active-set null-space method)

Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results Refs

SQOPT: Large-scale convex QP

min
$$c^T x + \frac{1}{2} x^T H x$$
 st $Ax = b$, $l \le x \le u$

Reduced-Hessian method

$$\min \ c^T x + \frac{1}{2} x^T H x \quad \text{st} \quad A x = b, \quad l \le x \le u$$

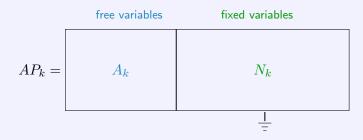
Reduced-Hessian method

$$Z^T H Z \Delta x_S = -Z^T g$$

- $Z^T H Z = R^T R$ exactly
- $Z^T H Z \approx R^T R$ quasi-Newton
- CG if dof > 2000
- LUSOL provides reliable Basis Repair

min
$$c^T x + \frac{1}{2} x^T H x$$
 st $Ax = b$, $l \le x \le u$

Reduced-Hessian method



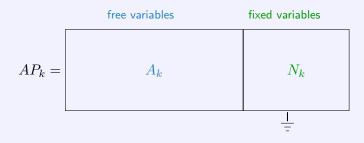
OK if A_k is nearly square: 10000×12000 or 100000×102000

RTRA STAE Workshop

Toulouse, Feb 3-5, 2010

min
$$c^T x + \frac{1}{2} x^T H x$$
 st $Ax = b$, $l \le x \le u$

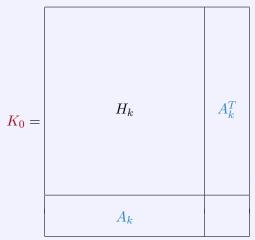
Reduced-Hessian method



For A_k 100000 × 400000, we need a QP solver based on KKT systems like QPA in GALAHAD

KKT system for current active set

Solve
$$K_0 \begin{pmatrix} \Delta x_k \\ \Delta y \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$



Motivation SQOPT **QPBLU** QPBLUR Results Penalty vs AugLag BCL QPBCL Results Refs

QPBLU

F90 convex QP solver based on block-LU updates of ${\boldsymbol K}$

F90 convex QP solver based on block-LU updates of ${\it K}$

$$K_0 = \begin{pmatrix} H_k & A_k^T \\ A_k & 0 \end{pmatrix} = L_0 D_0 L_0^T \text{ or } L_0 U_0$$

F90 convex QP solver based on block-LU updates of ${\it K}$

$$K_0 = \begin{pmatrix} H_k & A_k^T \\ A_k & 0 \end{pmatrix} = L_0 D_0 L_0^T \text{ or } L_0 U_0$$

 Uses black-box factorizer on K₀ (LUSOL, MA57, PARDISO, SuperLU, UMFPACK)

F90 convex QP solver based on block-LU updates of K

$$K_0 = \begin{pmatrix} H_k & A_k^T \\ A_k & 0 \end{pmatrix} = L_0 D_0 L_0^T \text{ or } L_0 U_0$$

- Uses black-box factorizer on K₀ (LUSOL, MA57, PARDISO, SuperLU, UMFPACK)
- Active-set method keeps K_0 nonsingular in theory

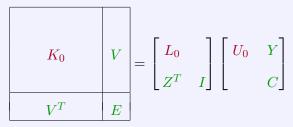
QPBLU block-LU updates

$$K_0 = egin{pmatrix} H_k & A_k^T \ A_k & 0 \end{pmatrix} = L_0 U_0$$

QPBLU block-LU updates

$$K_0 = \begin{pmatrix} H_k & A_k^T \\ A_k & 0 \end{pmatrix} = L_0 U_0$$

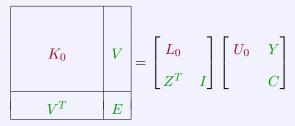
To change active set (add/delete cols of A_k), work with bordered system:



QPBLU block-LU updates

$$K_0 = \begin{pmatrix} H_k & A_k^T \\ A_k & 0 \end{pmatrix} = L_0 U_0$$

To change active set (add/delete cols of A_k), work with bordered system:

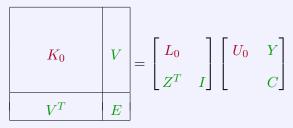


• Y, Z sparse, C small

QPBLU block-LU updates

$$K_0 = \begin{pmatrix} H_k & A_k^T \\ A_k & 0 \end{pmatrix} = L_0 U_0$$

To change active set (add/delete cols of A_k), work with bordered system:

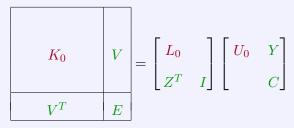


- Y, Z sparse, C small
- Quasi-Newton updates to H_k handled same way

QPBLU block-LU updates

$$K_0 = \begin{pmatrix} H_k & A_k^T \\ A_k & 0 \end{pmatrix} = L_0 U_0$$

To change active set (add/delete cols of A_k), work with bordered system:



- Y, Z sparse, C small
- Quasi-Newton updates to H_k handled same way
- Singular K₀ is a difficulty need KKT repair

RTRA STAE Workshop

Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results Refs

QPBLUR: Large-scale QP with Regularization

$$\min_{x,y} \quad c^T x + \frac{1}{2} x^T H x + \frac{1}{2} \delta \|x\|_2^2 + \frac{1}{2} \mu \|y\|_2^2$$
$$A x + \mu y = b, \quad l \le x \le u$$

$$\min_{x,y} \quad c^{T}x + \frac{1}{2}x^{T}Hx + \frac{1}{2}\delta \|x\|_{2}^{2} + \frac{1}{2}\mu \|y\|_{2}^{2}$$
$$Ax + \mu y = b, \quad l \le x \le u$$

$$\begin{pmatrix} -(H_k + \delta I) & A_k^T \\ A_k & \mu I \end{pmatrix} \begin{pmatrix} \Delta x_k \\ \Delta y \end{pmatrix} = \begin{pmatrix} g_k - A_k^T y \\ 0 \end{pmatrix}$$

$$\min_{x,y} \quad c^{T}x + \frac{1}{2}x^{T}Hx + \frac{1}{2}\delta \|x\|_{2}^{2} + \frac{1}{2}\mu \|y\|_{2}^{2}$$
$$Ax + \mu y = b, \quad l \le x \le u$$

 δ and μ small

$$\begin{pmatrix} -(H_k + \delta I) & A_k^T \\ A_k & \mu I \end{pmatrix} \begin{pmatrix} \Delta x_k \\ \Delta y \end{pmatrix} = \begin{pmatrix} g_k - A_k^T y \\ 0 \end{pmatrix}$$

• Nonsingular for any active set (any active cols A_k)

$$\min_{x,y} \quad c^T x + \frac{1}{2} x^T H x + \frac{1}{2} \delta \|x\|_2^2 + \frac{1}{2} \mu \|y\|_2^2$$
$$A x + \mu y = b, \quad l \le x \le u$$

$$\begin{pmatrix} -(H_k + \delta I) & A_k^T \\ A_k & \mu I \end{pmatrix} \begin{pmatrix} \Delta x_k \\ \Delta y \end{pmatrix} = \begin{pmatrix} g_k - A_k^T y \\ 0 \end{pmatrix}$$

- Nonsingular for any active set (any active cols A_k)
- Always feasible (no Phase 1)

QPBLUR (Thesis of Chris Maes 2010)

$$\min_{x,y} \quad c^T x + \frac{1}{2} x^T H x + \frac{1}{2} \delta \|x\|_2^2 + \frac{1}{2} \mu \|y\|_2^2$$
$$A x + \mu y = b, \quad l \le x \le u$$

$$\begin{pmatrix} -(H_k + \delta I) & A_k^T \\ A_k & \mu I \end{pmatrix} \begin{pmatrix} \Delta x_k \\ \Delta y \end{pmatrix} = \begin{pmatrix} g_k - A_k^T y \\ 0 \end{pmatrix}$$

- Nonsingular for any active set (any active cols A_k)
- Always feasible (no Phase 1)
- Can use LUSOL, MA57, UMFPACK, ... without change

$$\min_{x,y} \quad c^T x + \frac{1}{2} x^T H x + \frac{1}{2} \delta \|x\|_2^2 + \frac{1}{2} \mu \|y\|_2^2$$
$$A x + \mu y = b, \quad l \le x \le u$$

$$\begin{pmatrix} -(H_k + \delta I) & A_k^T \\ A_k & \mu I \end{pmatrix} \begin{pmatrix} \Delta x_k \\ \Delta y \end{pmatrix} = \begin{pmatrix} g_k - A_k^T y \\ 0 \end{pmatrix}$$

- Nonsingular for any active set (any active cols A_k)
- Always feasible (no Phase 1)
- Can use LUSOL, MA57, UMFPACK, ... without change
- Can use Hanh's block-LU updates without change

QPBLUR strategy

$$\min_{x,y} \quad c^T x + \frac{1}{2} x^T H x + \frac{1}{2} \delta \|x\|_2^2 + \frac{1}{2} \mu \|y\|_2^2$$
$$A x + \mu y = b, \quad l \le x \le u$$

Matlab implementation

• Scale problem

$$\min_{x,y} \quad c^T x + \frac{1}{2} x^T H x + \frac{1}{2} \delta \|x\|_2^2 + \frac{1}{2} \mu \|y\|_2^2$$
$$A x + \mu y = b, \quad l \le x \le u$$

- Scale problem
- Solve with $\delta, \mu = 10^{-6}, 10^{-8}, 10^{-10}, 10^{-12}$ optiol = $\sqrt{\delta}$

$$\min_{x,y} \quad c^T x + \frac{1}{2} x^T H x + \frac{1}{2} \delta \|x\|_2^2 + \frac{1}{2} \mu \|y\|_2^2$$
$$A x + \mu y = b, \quad l \le x \le u$$

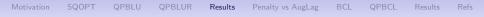
- Scale problem
- Solve with $\delta, \mu = 10^{-6}, 10^{-8}, 10^{-10}, 10^{-12}$ optiol = $\sqrt{\delta}$
- Unscale

$$\min_{x,y} \quad c^T x + \frac{1}{2} x^T H x + \frac{1}{2} \delta \|x\|_2^2 + \frac{1}{2} \mu \|y\|_2^2$$
$$A x + \mu y = b, \quad l \le x \le u$$

- Scale problem
- Solve with $\delta, \mu = 10^{-6}, 10^{-8}, 10^{-10}, 10^{-12}$ optiol = $\sqrt{\delta}$
- Unscale
- Solve with $\delta, \mu = 10^{-8}, 10^{-10}, 10^{-12}$ optiol = $\sqrt{\delta}$

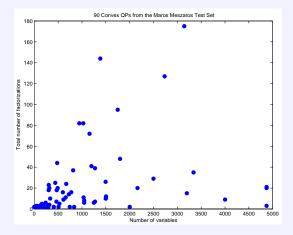
$$\min_{x,y} \quad c^T x + \frac{1}{2} x^T H x + \frac{1}{2} \delta \|x\|_2^2 + \frac{1}{2} \mu \|y\|_2^2$$
$$A x + \mu y = b, \quad l \le x \le u$$

- Scale problem
- Solve with $\delta, \mu = 10^{-6}, 10^{-8}, 10^{-10}, 10^{-12}$ optiol = $\sqrt{\delta}$
- Unscale
- Solve with $\delta, \mu = 10^{-8}, 10^{-10}, 10^{-12}$ optiol = $\sqrt{\delta}$
- Exit if small relative change in obj



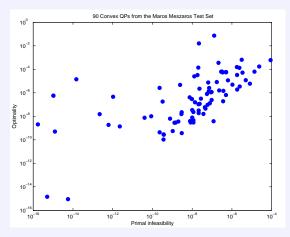
Numerical Results on 90 QP problems (Meszaros set)

KKT factorizations



No. of factorizations on 90 Meszaros QP test problems

Accuracy of solutions



Residuals for 90 Meszaros QP test problems

$$\min_{x,y} c^{T}x + \frac{1}{2}x^{T}Hx + \frac{1}{2}\delta x^{T}x + \frac{1}{2}\mu y^{T}y \qquad Ax + \mu y = b, \ l \le x \le u$$

Advantages

• Warm starts (any x_0 , any working set)

$$\min_{x,y} c^{T}x + \frac{1}{2}x^{T}Hx + \frac{1}{2}\delta x^{T}x + \frac{1}{2}\mu y^{T}y \qquad Ax + \mu y = b, \ l \le x \le u$$

Advantages

- Warm starts (any x_0 , any working set)
- Any black-box LU or LDL^T solver (preferably separate L/U solves and no refinement)

$$\min_{x,y} c^{T}x + \frac{1}{2}x^{T}Hx + \frac{1}{2}\delta x^{T}x + \frac{1}{2}\mu y^{T}y \qquad Ax + \mu y = b, \ l \le x \le u$$

Advantages

- Warm starts (any x_0 , any working set)
- Any black-box LU or LDL^T solver (preferably separate L/U solves and no refinement)
- LU should never report singularity (no KKT repair)

$$\min_{x,y} c^{T}x + \frac{1}{2}x^{T}Hx + \frac{1}{2}\delta x^{T}x + \frac{1}{2}\mu y^{T}y \qquad Ax + \mu y = b, \ l \le x \le u$$

Advantages

- Warm starts (any x_0 , any working set)
- Any black-box LU or LDL^T solver (preferably separate L/U solves and no refinement)
- LU should never report singularity (no KKT repair)
- Simple algorithm (strict convexity, always feasible, no primal degeneracy)

$$\min_{x,y} c^{T}x + \frac{1}{2}x^{T}Hx + \frac{1}{2}\delta x^{T}x + \frac{1}{2}\mu y^{T}y \qquad Ax + \mu y = b, \ l \le x \le u$$

Advantages

- Warm starts (any x_0 , any working set)
- Any black-box LU or LDL^T solver (preferably separate L/U solves and no refinement)
- LU should never report singularity (no KKT repair)
- Simple algorithm (strict convexity, always feasible, no primal degeneracy)

Disadvantages

• Large regularization: many itns from cold start

$$\min_{x,y} c^{T}x + \frac{1}{2}x^{T}Hx + \frac{1}{2}\delta x^{T}x + \frac{1}{2}\mu y^{T}y \qquad Ax + \mu y = b, \ l \le x \le u$$

Advantages

- Warm starts (any x_0 , any working set)
- Any black-box LU or LDL^T solver (preferably separate L/U solves and no refinement)
- LU should never report singularity (no KKT repair)
- Simple algorithm (strict convexity, always feasible, no primal degeneracy)

Disadvantages

- Large regularization: many itns from cold start
- Tiny regularization: risks ill-conditioned KKT (but so far so good)

Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results Refs

Penalty vs Augmented Lagrangian

$$\phi(x) \equiv c^T x + \frac{1}{2} x^T H x + \frac{1}{2} \delta \|x\|_2^2$$

$$\phi(x) \equiv c^T x + \frac{1}{2} x^T H x + \frac{1}{2} \delta \|x\|_2^2$$

Regularized QP

$$\min_{x,y} \phi(x) + \frac{1}{2}\mu \|y\|_2^2 \qquad Ax + \mu y = b, \quad l \le x \le u$$

$$\phi(x) \equiv c^T x + \frac{1}{2}x^T H x + \frac{1}{2}\delta \|x\|_2^2$$

Regularized QP

$$\min_{x,y} \phi(x) + \frac{1}{2}\mu \|y\|_2^2 \qquad Ax + \mu y = b, \quad l \le x \le u$$

 \equiv quadratic penalty function:

$$\min_{\ell \le x \le u} \phi(x) + \frac{1}{2}\rho \|b - Ax\|_2^2 \qquad (\rho = 1/\mu)$$

$$\phi(x) \equiv c^T x + \frac{1}{2} x^T H x + \frac{1}{2} \delta \|x\|_2^2$$

Regularized QP

$$\min_{x,y} \phi(x) + \frac{1}{2}\mu \|y\|_2^2 \qquad Ax + \mu y = b, \quad l \le x \le u$$

 \equiv quadratic penalty function:

$$\min_{\ell \le x \le u} \phi(x) + \frac{1}{2}\rho \|b - Ax\|_2^2 \qquad (\rho = 1/\mu)$$

Why not Augmented Lagrangian?:

$$\min_{\ell \le x \le u} \phi(x) - \hat{y}^T (b - Ax) + \frac{1}{2} \rho \|b - Ax\|_2^2$$

RTRA STAE Workshop

Toulouse, Feb 3-5, 2010

Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results Refs

BCL method as in LANCELOT

$$\min \ \phi(x) \ \text{ st } \ c(x)=0, \ \ell \leq x \leq u$$

Bound-constrained augmented Lagrangian method

$$L(x, \hat{y}, \rho) = \phi(x) - \hat{y}^T c(x) + \frac{1}{2}\rho \|c(x)\|^2$$

$$\min \ \phi(x) \ \text{ st } \ c(x)=0, \ \ell \leq x \leq u$$

Bound-constrained augmented Lagrangian method

$$L(x, \hat{y}, \rho) = \phi(x) - \hat{y}^T c(x) + \frac{1}{2}\rho \|c(x)\|^2$$

• Subproblem: $\min_x L(x, \hat{y}, \rho)$ st $\ell \leq x \leq u$

$$\min \ \phi(x) \ \text{ st } \ c(x)=0, \ \ell \leq x \leq u$$

Bound-constrained augmented Lagrangian method

$$L(x, \hat{y}, \rho) = \phi(x) - \hat{y}^T c(x) + \frac{1}{2}\rho \|c(x)\|^2$$

- Subproblem: $\min_x L(x, \hat{y}, \rho)$ st $\ell \leq x \leq u$
- Solve to get \hat{x} (optimality tol $\omega \to 0$)

$$\min \ \phi(x) \ \text{ st } \ c(x)=0, \ \ell \leq x \leq u$$

Bound-constrained augmented Lagrangian method

$$L(x, \hat{y}, \rho) = \phi(x) - \hat{y}^T c(x) + \frac{1}{2}\rho \|c(x)\|^2$$

- Subproblem: $\min_x L(x, \hat{y}, \rho)$ st $\ell \leq x \leq u$
- Solve to get \hat{x} (optimality tol $\omega \to 0$)
- If $\|c(\hat{x})\| < \eta$, update \hat{y}

(feasibility tol $\eta \rightarrow 0$)

$$\min \ \phi(x) \ \text{ st } \ c(x)=0, \ \ell \leq x \leq u$$

Bound-constrained augmented Lagrangian method

$$L(x, \hat{y}, \rho) = \phi(x) - \hat{y}^T c(x) + \frac{1}{2}\rho \|c(x)\|^2$$

- Subproblem: $\min_x L(x, \hat{y}, \rho)$ st $\ell \leq x \leq u$
- Solve to get \hat{x} (optimality tol $\omega \to 0$)
- If $\|c(\hat{x})\| < \eta$, update \hat{y}
- Otherwise, increase ho

(feasibility tol $\eta \rightarrow 0$)

$$\min \ \phi(x) \ \text{ st } \ c(x)=0, \ \ell \leq x \leq u$$

Bound-constrained augmented Lagrangian method

$$L(x, \hat{y}, \rho) = \phi(x) - \hat{y}^T c(x) + \frac{1}{2}\rho \|c(x)\|^2$$

- Subproblem: $\min_x L(x, \hat{y}, \rho)$ st $\ell \leq x \leq u$
- Solve to get \hat{x} (optimality tol $\omega \rightarrow 0$)
- If $\|c(\hat{x})\| < \eta$, update \hat{y}
- Otherwise, increase ρ
- Repeat

(feasibility tol $\eta \rightarrow 0$)

QPBLU

BCL Method for QP

$$\min_x \ \phi(x) \ \text{ st } \ Ax = b, \ \ell \leq x \leq u$$

BCL subproblem

$$\min_{x,r} L(x, \hat{y}, \rho) = \phi(x) + \hat{y}^T r + \frac{1}{2}\rho ||r||^2$$
$$Ax + r = b, \qquad \ell \le x \le u$$

QPBLU

BCL Method for QP

$$\min_x \ \phi(x) \ \text{ st } \ Ax = b, \ \ell \leq x \leq u$$

BCL subproblem

$$\min_{x,r} L(x, \hat{y}, \rho) = \phi(x) + \hat{y}^T r + \frac{1}{2}\rho ||r||^2$$
$$Ax + r = b, \qquad \ell \le x \le u$$

• Solve subproblem to get $\hat{x}, \, \hat{r}$ (optimality tol $\omega \to 0$)

BCL Method for QP

$$\min_{x} \phi(x) \text{ st } Ax = b, \ \ell \leq x \leq u$$

BCL subproblem

$$\min_{x,r} L(x, \hat{y}, \rho) = \phi(x) + \hat{y}^T r + \frac{1}{2}\rho ||r||^2$$
$$Ax + r = b, \qquad \ell \le x \le u$$

- $\bullet\,$ Solve subproblem to get \hat{x} , \hat{r}
- If $\|\hat{r}\| < \eta$, update \hat{y}

(optimality tol $\omega \to 0$) (feasibility tol $\eta \to 0$) QPBLU

$$\min_{x} \phi(x) \text{ st } Ax = b, \ \ell \leq x \leq u$$

BCL subproblem

$$\min_{x,r} L(x,\hat{y},\rho) = \phi(x) + \hat{y}^T r + \frac{1}{2}\rho ||r||^2$$
$$Ax + r = b, \qquad \ell \le x \le u$$

- $\bullet\,$ Solve subproblem to get \hat{x} , \hat{r}
- If $\|\hat{r}\| < \eta$, update \hat{y}
- Otherwise, increase ρ

(optimality tol $\omega \to 0$) (feasibility tol $\eta \to 0$)

BCL Method for QP

$$\min_{x} \phi(x) \text{ st } Ax = b, \ \ell \leq x \leq u$$

BCL subproblem

$$\min_{x,r} L(x, \hat{y}, \rho) = \phi(x) + \hat{y}^T r + \frac{1}{2}\rho ||r||^2$$
$$Ax + r = b, \qquad \ell \le x \le u$$

- $\bullet\,$ Solve subproblem to get \hat{x} , \hat{r}
- If $\|\hat{r}\| < \eta$, update \hat{y}
- Otherwise, increase ρ
- Repeat

(optimality tol $\omega \to 0$) (feasibility tol $\eta \to 0$) Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results Refs

QPBCL

RTRA STAE Workshop

QPBCL: Active-set method for convex QP

$$AP = \begin{pmatrix} A_k & N_k \end{pmatrix}$$

QPBCL: Active-set method for convex QP

$$AP = \begin{pmatrix} A_k & N_k \end{pmatrix}$$

$$\begin{pmatrix} -(H_k + \delta I) & A_k^T \\ A_k & \frac{1}{\rho}I \end{pmatrix} \begin{pmatrix} \Delta x_k \\ \Delta y \end{pmatrix} = \begin{pmatrix} g_k - A_k^T y \\ \frac{1}{\rho}(\hat{y} - y) + r \end{pmatrix}$$
$$\Delta r = \frac{1}{\rho}(y + \Delta y - \hat{y}) - r$$

QPBCL: Active-set method for convex QP

$$AP = \begin{pmatrix} A_k & N_k \end{pmatrix}$$

$$\begin{pmatrix} -(H_k + \delta I) & A_k^T \\ A_k & \frac{1}{\rho}I \end{pmatrix} \begin{pmatrix} \Delta x_k \\ \Delta y \end{pmatrix} = \begin{pmatrix} g_k - A_k^T y \\ \frac{1}{\rho}(\hat{y} - y) + r \end{pmatrix}$$
$$\Delta r = \frac{1}{\rho}(y + \Delta y - \hat{y}) - r$$

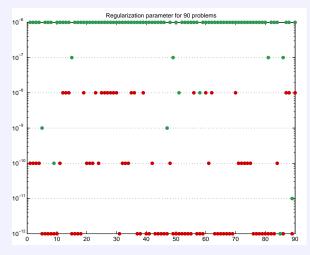
- Same system as QPBLUR just different rhs
- Still single phase
- Still use LUSOL, MA57, UMFPACK,
- Still use Hanh's block-LU updates

Motivation SQOPT QPBLU QPBLUR Results Penalty vs AugLag BCL QPBCL Results Refs

Numerical Results

90 Meszaros QP problems

<code>QPBCL</code> solves with smaller penalty ρ (hence larger $\mu \equiv 1/\rho)$ compared to <code>QPBLUR</code>



COPS 3.0 problems with many degrees of freedom

	m	n	dof
dirichlet	42	8981	5355
henon	82	10801	9410
lane_emden	82	19240	5414
minsurf	0	5000	4782

- SNOPT/AMPL
- Major iterations generate QPs, solved by SQOPT
- $\bullet~\ensuremath{\mathsf{QP}}$ data loaded into $\ensuremath{\mathrm{MATLAB}}$, solved by $\ensuremath{\mathsf{QPBCL}}$

COPS 3.0 problems with many degrees of freedom

	m	n	dof
dirichlet	42	8981	5355
henon	82	10801	9410
lane_emden	82	19240	5414
minsurf	0	5000	4782

- SNOPT/AMPL
- Major iterations generate QPs, solved by SQOPT
- \bullet QP data loaded into ${\rm MATLAB},$ solved by QPBCL

Compare SQOPT iterations and QPBCL iterations

COPS 3.0 problems with many degrees of freedom

	m	n	dof
dirichlet	42	8981	5355
henon	82	10801	9410
lane_emden	82	19240	5414
minsurf	0	5000	4782

- SNOPT/AMPL
- Major iterations generate QPs, solved by SQOPT
- \bullet QP data loaded into ${\rm MATLAB},$ solved by QPBCL

Compare SQOPT iterations and QPBCL iterations

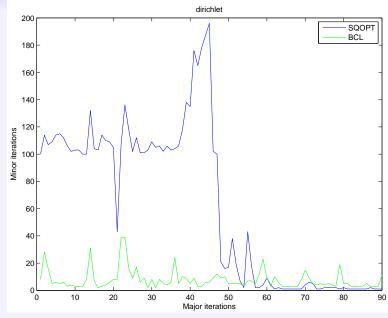
There are 3 kinds of people: Those who can count, and those who cannot.

— George Carlin

Penalty vs AugLa

g BCL (

BCL Results



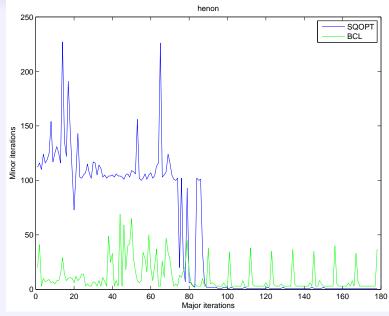
RTRA STAE Workshop

Toulouse, Feb 3-5, 2010

Penalty vs AugLa

_ag BCL

BCL Results



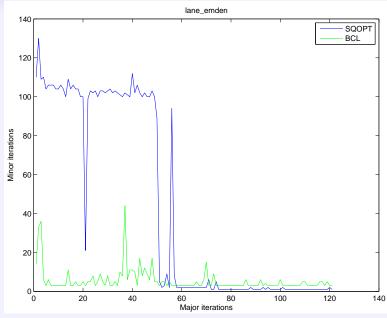
RTRA STAE Workshop

Toulouse, Feb 3-5, 2010

Penalty vs AugLa

BCL QI

Results Refs



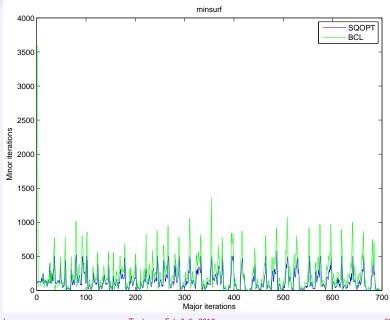
RTRA STAE Workshop

Toulouse, Feb 3-5, 2010

Penalty vs AugLag

BCL QPE

Results Re



Toulouse, Feb 3-5, 2010

• Conn, Gould, and Toint (1992) LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A), Springer-Verlag Refs

- Conn, Gould, and Toint (1992) LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A), Springer-Verlag
- Nocedal and Wright (2006) Chapter 17 of Numerical Optimization, Springer

- Conn, Gould, and Toint (1992) LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A), Springer-Verlag
- Nocedal and Wright (2006) Chapter 17 of Numerical Optimization, Springer
- M. P. Friedlander and S. Leyffer (2008) Global and finite termination of a two-phase augmented Lagrangian filter method for general QP, SISC 30

- Conn, Gould, and Toint (1992)
 LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A), Springer-Verlag
- Nocedal and Wright (2006) Chapter 17 of Numerical Optimization, Springer
- M. P. Friedlander and S. Leyffer (2008) Global and finite termination of a two-phase augmented Lagrangian filter method for general QP, SISC 30
- Philip Gill and Elizabeth Wong (2009-···) Continuing Hanh's f90 QPBLU for use in SNOPT BCL approach for indefinite QP (2nd derivatives in SNOPT)

- Conn, Gould, and Toint (1992)
 LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A), Springer-Verlag
- Nocedal and Wright (2006) Chapter 17 of Numerical Optimization, Springer
- M. P. Friedlander and S. Leyffer (2008) Global and finite termination of a two-phase augmented Lagrangian filter method for general QP, SISC 30
- Philip Gill and Elizabeth Wong (2009-···) Continuing Hanh's f90 QPBLU for use in SNOPT BCL approach for indefinite QP (2nd derivatives in SNOPT)
- C. Kirches, H. G. Bock, J. P. Schlöder and S. Sager (2009) A factorization with update procedures for a KKT matrix arising in direct optimal control Active-set method with block-structured KKT factorization

RTRA STAE Workshop

Toulouse, Feb 3-5, 2010

Even convex QP isn't easy

but conferences help us make progress

Even convex QP isn't easy

but conferences help us make progress

Merci beaucoup a tous

lain Duff Serge Gratton Xavier Vasseur Brigitte Yzel

> STAE RTRA CERFACS