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Linear systems in sequence

Let

A: symmetric and positive definite matrix of order n

b1, . . . , br ∈ Rn: right-hand sides available in sequence

Solve in sequence:

Ax = b1, Ax = b2, . . . by an iterative method (Krylov solvers)

Preconditioning each system using information obtained during the
solution of the previous system(s)

→ Extend the idea to the case where A varies along the iterations
(Gauss-Newton method – variational ocean data assimilation)
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Preconditioning technique

Solve Ax = b1 and extract information info1

Solve Ax = b2 using info1 to precondition and extract information info2

Solve Ax = b3 using info2 (and possibly info1) to precondition and
extract information info3

. . .

where infok contains (in our case):

Descent directions pi

Ritz pairs (θi, zi) (approximations to eigenpairs)

produced by a conjugate gradient algorithm (or an equivalent Lanczos process)
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Conjugate gradient (CG) method

→ Solves minx∈Rn
1
2
xTAx− bTx or equivalently Ax = b

Given x0, set r0 ← Ax0 − b, p0 ← −r0, k ← 1

Loop on k

αk−1 ←
rT

k−1rk−1

pk−1
TApk−1

Compute the step length

xk ← xk−1 + αk−1pk−1 Update the iterate

rk ← rk−1 + αk−1Apk−1 Update the residual

βk ← rT
k rk

rT
k−1rk−1

Ensure A-conjugate directions

pk ← −rk + βkpk−1 Update the descent direction
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Descent directions

are A-conjugate:

pT
i Apj


> 0 if i = j
= 0 if i 6= j

belong to and span the Krylov subspace:

K(A, r0, k) = span{r0, Ar0, . . . , Ak−1r0}
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Lanczos method

→ Related to the CG method but allows in addition to approximate
eigenpairs belonging to the Krylov subspace K(A, r0, k):

Builds an orthonormal basis Q = [q1, . . . , qk] of K(A, r0, k) where

q1 = r0/‖r0‖

Uses the Galerkin approach, i.e., computes (θ, z) such that

QT (Az − θz) = 0
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Ritz pairs

Compute (θ, z) such that
QT (Az − θz) = 0

is equivalent to compute (θ, y) such that

QTAQy = θy (z = Qy, y ∈ Rk, QTQ = In)

Definition

If (θi, yi) solves the eigenproblem above, then the pair

(θi, zi) with zi = Qyi

is called Ritz pair of A w.r.t. the considered Krylov subspace

Ritz-vectors are orthonormal and A-conjugate
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From BFGS

The BFGS updating formula (inverse Hessian):

Hk =

„
In −

yks
T
k

yT
k sk

«T

Hk−1

„
In −

yks
T
k

yT
k sk

«
+
sks

T
k

yT
k sk

where sk = xk − xk−1 and yk = ∇f(xk)−∇f(xk−1)

applied to f(x) = 1
2
xTAx− bTx and with

sk = xk − xk−1 = αk−1pk−1 (CG step) and yk = rk − rk−1 = Ask

writes

Hk =

 
In −

kX
i=1

sis
T
i

sT
i Asi

A

!
H0

 
In −

kX
i=1

A
sis

T
i

sT
i Asi

!
+

kX
i=1

sis
T
i

sT
i Asi
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To a general form

Letting S = [s1, . . . , sk], since STAS is diagonal,

Hk =

 
In −

kX
i=1

sis
T
i

sT
i Asi

A

!
H0

 
In −

kX
i=1

A
sis

T
i

sT
i Asi

!
+

kX
i=1

sis
T
i

sT
i Asi

writes

Hk =
h
In − S(STAS)−1STA

i
H0

h
In −AS(STAS)−1ST

i
+ S(STAS)−1ST

→ How good is this matrix when used as a preconditioner with S containing
a limited number of:

CG directions ?

or general A-conjugate directions (such as Ritz vectors) ?

or even any set of vectors such that STAS is nonsingular ?
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General LMP formulation

[Gratton, Sartenaer, Tshimanga, submitted to SIOPT]

Definition

Let A and M be symmetric positive definite matrices of order n

Let S be any n by k matrix of rank k, with k ≤ n

The symmetric matrix:

H =
h
In − S(STAS)−1STA

i
M
h
In −AS(STAS)−1ST

i
+ S(STAS)−1ST

is called the Limited Memory Preconditioner (LMP)

M ≡ first-level preconditioner H ≡ second-level preconditioner
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Elementary properties of the LMP

H =
h
In − S(STAS)−1STA

i
M
h
In −AS(STAS)−1ST

i
+ S(STAS)−1ST

Proposition

H is symmetric and positive definite

H is invariant under a change of basis for the columns of S
(S ← Z = SX, X nonsingular)

H = A−1 if S is of order n (k = n)

(Possibly cheap) factored form: H = GGT with

G = L − SR−1R−TSTAL + SR−1X−TSTL−T

where

M = LLT (L of order n)
STAS = RTR (R of order k)
STL−TL−1S = XTX (X of order k)
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Connection with the existing L-BFGS form

(Let M = In)

Using Y = AS and letting B = Y TS = STAS we have:

H =
h
In − SB−1Y T

i h
In − Y B−1ST

i
+ SB−1ST

Letting R = triu(B) and D = diag(B), the classical L-BFGS update

reads [Gilbert, Nocedal, 1993], [Byrd, Nocedal, Schnabel, 1994]:

h
In − SR−TY T

i h
In − Y R−1ST

i
+ SR−TDR−1ST

This last formula is not invariant under transformations of S
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Construction cost

H =
h
In − S(STAS)−1STA

i
M
h
In −AS(STAS)−1ST

i
+ S(STAS)−1ST

Let S ← Z = SX (X nonsing.) with ZTAZ = In, by invariance property:

H =
“
In − ZZTA

”
M
“
In −AZZT

”
+ ZZT

or, if Y = AZ,

H =
“
In − ZY T

”
M
“
In − Y ZT

”
+ ZZT

→ Step-by-step construction of Z (Gram-Schmidt) and Y :

k matrix-vector products by A

± 3k2n additional flops

Gratton, Laloyaux, Sartenaer, Tshimanga, Weaver Preconditioners for Krylov solvers in data assimilation



General framework
A class of Limited Memory Preconditioners

Application to variational ocean data assimilation
Further improvements

A class of LMP
Theoretical properties
Particular cases

Application cost

Hq =
“
In − ZY T

”
M
“
In − Y ZT

”
q + ZZT q

Computation of r = Hq

1. f = ZT q (costs 2kn flops)

2. r̄ = M(q − Y f) (costs 2kn flops and one product by M)

3. r = r̄ − Z(Y T r̄ − f) (costs 4kn flops)

→ one matrix-vector product by M and 8kn additional flops
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Eigenvalues clusterization effect of the LMP

Proposition

Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λn denote the eigenvalues of MA

Let µ1, . . . , µn denote the eigenvalues of HA

Then {µ1, . . . , µn} can be split in two subsets:8<:
µj = 1 for j ∈ {n− k + 1, . . . , n}

λj ≤ µj ≤ λj+k for j ∈ {1, . . . , n− k}
and

κ(HA) ≤ max{1, λn}
min{1, λ1}

→ At least k eigenvalues are clustered at 1

→ The remaining part of the spectrum does not expand
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Illustration

A = incomplete Cholesky factorization of the BCSSTK 27 matrix
(Harwell-Boeing Collection)

n = 1224

λmin(A) = 0.007 and λmax(A) = 36.0

M = In

S constructed with 300 randomly generated vectors

→ Comparison of the eigen-distribution of A and HA
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→ Part of the spectrum has been shifted to 1

→ The remaining part of the spectrum does not expand
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Three particular cases

Remember that if the vectors in S = [s1, . . . , sk] are A-conjugate, then:

H =
h
In − S(STAS)−1STA

i
M
h
In −AS(STAS)−1ST

i
+ S(STAS)−1ST

simplifies to:

H =

 
In −

kX
i=1

sis
T
i

sT
i Asi

A

!
M

 
In −

kX
i=1

A
sis

T
i

sT
i Asi

!
+

kX
i=1

sis
T
i

sT
i Asi
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First case: the quasi-Newton LMP

Take si = pi, i = 1, . . . , k, the descent directions generated by a CG method

Proposition

The LMP built with M = H0 and S = [p1, . . . , pk] writes

Hk =

„
In −

pkp
T
kA

pT
kApk

«
Hk−1

„
In −

Apkp
T
k

pT
kApk

«
+

pkp
T
k

pT
kApk

→ Amounts to the preconditioner proposed by Morales and Nocedal, 2000
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Second case: the spectral-LMP

Take si = vi, i = 1, . . . , k, eigenvectors of A (associated to λi)

Proposition

The LMP built with M = In and S = [v1, . . . , vk] writes

H =
kY

i=1

»
In −

„
1− 1

λi

«
viv

T
i

–

→ Amounts to the preconditioner proposed by Fisher, 1998

→ Daily used in operational data assimilation systems but with Ritz pairs
(θi, zi) to approximate eigenpairs (λi, vi):

H̃ =

kY
i=1

»
In −

„
1− 1

θi

«
ziz

T
i

–

→ “Inexact spectral-LMP” (!!! no more a member of our class of LMP !!!)
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Third case: the Ritz-LMP

Take si = zi, i = 1, . . . , k, Ritz vectors of A (associated to θi)

Proposition

The LMP built with M = In and S = [z1, . . . , zk] writes

H =
kY

i=1

»
In −

„
1− 1

θi
− ω2

i

«
ziz

T
i − ωi(ziq

T
k+1 + qk+1z

T
i )

–
where qk+1 is a Lanczos vector and

|ωi| =
‖Azi − θizi‖

θi

for i = 1, . . . , k

→ New preconditioner !!!
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Inexact spectral-LMP versus Ritz-LMP

Compare

H̃ =

kY
i=1

»
In −

„
1− 1

θi

«
ziz

T
i

–
with

H =

kY
i=1

»
In −

„
1− 1

θi
−ω2

i

«
ziz

T
i − ωi(ziq

T
k+1 + qk+1z

T
i )

–

→ The Ritz-LMP is an enriched version of the inexact spectral-LMP

→ The Ritz-LMP uses only one more vector than the inexact spectral-LMP
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Proposition

‖H̃ −H‖2 ≤ k
“

max
i

(ω2
i ) + max

i
(| ωi|)

”
where

|ωi| =
‖Azi − θizi‖

θi

for i = 1, . . . , k

→ The smaller the error in the Ritz pairs, the closer the inexact
spectral-LMP to the Ritz-LMP

Gratton, Laloyaux, Sartenaer, Tshimanga, Weaver Preconditioners for Krylov solvers in data assimilation



General framework
A class of Limited Memory Preconditioners

Application to variational ocean data assimilation
Further improvements

A class of LMP
Theoretical properties
Particular cases

Quasi-Newton LMP versus Ritz-LMP

Compare

Hk =

„
In −

pkp
T
kA

pT
kApk

«
Hk−1

„
In −

Apkp
T
k

pT
kApk

«
+

pkp
T
k

pT
kApk

with

H =
kY

i=1

»
In −

„
1− 1

θi
− ω2

i

«
ziz

T
i − ωi(ziq

T
k+1 + qk+1z

T
i )

–

→ The quasi-Newton LMP is about twice more expensive in storage than
the Ritz-LMP
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CG descent directions and Ritz vectors span the same Krylov subspace

The LMP H is invariant under transformations of S

Proposition

The Ritz-LMP and the quasi-Newton LMP are analytically equivalent when

they are constructed with all available information (descent directions or Ritz

vectors) from a CG-like method run on a same matrix
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Comparison of the three particular cases:

Quasi-Newton LMP

Inexact spectral-LMP

Ritz-LMP

on a realistic data assimilation system
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Incremental 4D-Var approach
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Motivation

Numerical forecast is performed by integrating PDE describing the model
of evolution of the system of interest (atmosphere, ocean, etc.)

An important part of forecast systems is data assimilation which combines
observations and model equations to produces the “best” initial condition

Data assimilation belongs to the class of nonlinear least-squares problems

Our interest: improve some optimization software involved in data
assimilation in oceanography
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Four-Dimensional Variational (4D-Var) formulation

→ Very large-scale nonlinear weighted least-squares problem:

min
x∈Rn

f(x) =
1

2
||x− xb||2B−1 +

1

2

NX
j=0

||Hj(Mj(x))− yj ||2R−1
j

where:

Size of real (operational) problems: x, xb ∈ R106
, yj ∈ R105

The observations yj and the background xb are noisy

Mj are model operators (nonlinear)

Hj are observation operators (nonlinear)

B is the covariance background error matrix

Rj are covariance observation error matrices
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Incremental 4D-Var

Let rewrite the problem as:

min
x∈Rn

f(x) =
1

2
||ρ(x)||22

Incremental 4D-Var is an inexact/truncated Gauss-Newton algorithm:

It linearizes ρ around the current iterate x̃ and solves

min
x∈Rn

1

2
‖ρ(x̃) + J(x̃)(x− x̃)‖22

where J(x̃) is the Jacobian of ρ(x) at x̃

It thus solves a sequence of linear systems (normal equations)

JT (x̃)J(x̃)(x− x̃) = −JT (x̃)ρ(x̃)

where the matrix is symmetric positive definite and varies
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First-level preconditioner

 
f(x) =

1

2
||ρ(x)||22 =

1

2
||x− xb||2B−1 +

1

2

NX
j=0

||Hj(Mj(x))− yj ||2R−1
j

!

At the background xb:

JT (xb)J(xb) = B−1 +

NX
j=0

MT
j HT

j R
−1
j HjMj

Choosing M = B1/2(B1/2)T as first-level preconditioner yields:

(B1/2)TJT (xb)J(xb)B1/2 = In +
NX

j=0

(B1/2)T MT
j HT

j R
−1
j HjMjB

1/2 (= A0)

→ Large amount of eigenvalues already clustered at 1
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The framework

[Tshimanga, Gratton, Weaver, Sartenaer, QJRMS, 2007]

A realistic outer/inner loop configuration is considered:

3 outer loops of Gauss-Newton (linearization)

10 inner loops of conjugate gradient (on each of the 3 systems)

The performance is measured by the value of the quadratic cost function

The convergence of Ritz pairs is measured by the backward errors:

‖Azi − θizi‖
‖A‖‖zi‖
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Unpreconditioned runs
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→ The Ritz values for the three matrices are close together

→ The extremal Ritz pairs have the smallest backward errors (better approx.)
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Preconditioned runs

We consider the three forms:

Quasi-Newton LMP

Inexact spectral-LMP

Ritz-LMP

In order to

Analyse, for each, the effect of increasing the number of vectors in S
(second and third systems)

Compare their performance
(second system)

To this aim, an unpreconditioned conjugate gradient is run on the first system
to produce 10 vectors from which 2, 6 and 10 relevant ones are selected:

Ritz-vectors are selected according to their convergence

Descent directions are selected as the latest ones
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Quasi-Newton LMP
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→ Positive impact of an increase in the number of vectors in S
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Inexact spectral-LMP
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→ Negative impact of an increase in the number of vectors in S

(Ritz pairs may be bad eigenpairs approximation)
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Ritz-LMP
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→ Positive and faster impact of an increase in the number of vectors in S
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Ranking LMP (2 vectors)
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→ Inexact spectral-LMP ≡ Ritz-LMP – Quasi-Newton LMP is worse
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Ranking LMP (6 vectors)
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→ Ritz-LMP is the best – Inexact spectral-LMP deteriorates
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Ranking LMP (10 vectors)
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→ Quasi-Newton LMP ≡ Ritz-LMP

→ Inexact spectral-LMP even worse than no preconditioning
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What about the first system (A0)?

[Gratton, Laloyaux, Sartenaer, Tshimanga, in preparation]

Appropriate starting point for CG

 LMP again!

→ Illustration on a one-dimensional shallow water model
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One-dimensional shallow water model

→ Estimate the velocity and geopotential of a fluid flow over an obstacle:

1D-grid with 250 mesh-points

x, xb (background) ∈ R500

yj (observations) ∈ R80

→ Outer/inner loop configuration:

3 outer loops of Gauss-Newton (linearization)

5 inner loops of conjugate gradient (on each of the 3 systems)
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Gauss-Newton (with x0
0 = xb)
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→ Computational cost dominated by 15 matrix-vector products
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Improving the starting point x0
0

Physical considerations:

The ocean and the atmosphere exhibit an attractor

Most of the variability can be explained in the “attractor subspace”
(of low dimension r)

→ Minimize first in this subspace (of basis L)
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Empirical Orthogonal Functions (EOFs)

Construction of L:

Let x1, . . . , xp ∈ Rn be a set of state vectors (p = 200)

Build C = 1
p−1

Pp
i=1(xi − x̄)(xi − x̄)T

Compute the eigenvectors of C (EOFs)

Store r eigenvectors corresponding to the largest eigenvalues

→ Already used in the reduced Kalman filters (SEEK filter)
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Choice for r

Select r such that:

Pr
i=1 λiPn
i=1 λi

≥ 0.8

(λi ↘)

For the shallow water model
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→ The five first EOFs are computed (r = 5)
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Ritz-Galerkin starting point

The solution of the first system in the subspace spanned by L:

x0
0 = xb + L(LTA0L)−1LT b0

is called the Ritz-Galerkin starting point

is used as starting point in the CG for the first system (A0x = b0)

→ Computational cost dominated by r = 5 matrix-vector products
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First improvement
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LMP again!

H =
h
In − S(STA0S)−1STA0

i
M
h
In −A0S(STA0S)−1ST

i
+ S(STA0S)−1ST

with S = L (r EOFs)

for free (A0L known)

better clustering

better condition number
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Second improvement
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(Same H for the 3 systems)
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Thank you for your attention !

Thank you Serge !
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