> Preconditioners for Krylov solvers in data assimilation (for oceanic and atmospheric applications)

S. Gratton¹ P. Laloyaux² A. Sartenaer² J. Tshimanga³ A. Weaver³

¹ENSEEIHT, Toulouse, France ²FUNDP, Namur, Belgium ³CERFACS, Toulouse, France

Toulouse, February 2010

伺 ト イ ヨ ト イ ヨ ト

Outline

- 2 A class of Limited Memory Preconditioners (LMP)
- 3 Application to variational ocean data assimilation
- 4 Further improvements

Image: A Image: A

A class of Limited Memory Preconditioners Application to variational ocean data assimilation Further improvements

Outline

Systems in sequence Preconditioning technique

1 General framework

2 A class of Limited Memory Preconditioners (LMP)

3 Application to variational ocean data assimilation

4 Further improvements

/□ ▶ < 글 ▶ < 글

A class of Limited Memory Preconditioners Application to variational ocean data assimilation Further improvements Systems in sequence Preconditioning technique

Linear systems in sequence

Let

- A: symmetric and positive definite matrix of order n
- $b_1, \ldots, b_r \in \mathbb{R}^n$: right-hand sides available in sequence

Solve in sequence:

- $Ax = b_1$, $Ax = b_2$,... by an iterative method (Krylov solvers)
- Preconditioning each system using information obtained during the solution of the previous system(s)
- \rightarrow Extend the idea to the case where A varies along the iterations (Gauss-Newton method variational ocean data assimilation)

イロト イポト イラト イラト

A class of Limited Memory Preconditioners Application to variational ocean data assimilation Further improvements

Systems in sequence Preconditioning technique

Preconditioning technique

- Solve $Ax = b_1$ and extract information info₁
- Solve $Ax = b_2$ using info₁ to precondition and extract information info₂
- Solve $Ax = b_3$ using info₂ (and possibly info₁) to precondition and extract information info₃

• . . .

where $info_k$ contains (in our case):

- Descent directions p_i
- Ritz pairs (θ_i, z_i) (approximations to eigenpairs)

produced by a conjugate gradient algorithm (or an equivalent Lanczos process)

・ロト ・同ト ・ヨト ・ヨト

A class of Limited Memory Preconditioners Application to variational ocean data assimilation Further improvements

Systems in sequence Preconditioning technique

Conjugate gradient (CG) method

- \rightarrow Solves $\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T A x b^T x$ or equivalently A x = b
 - Given x_0 , set $r_0 \leftarrow Ax_0 b$, $p_0 \leftarrow -r_0$, $k \leftarrow 1$
 - ${\ensuremath{\, \circ \,}}$ Loop on k

$$\begin{array}{rcl} \alpha_{k-1} & \leftarrow & \displaystyle \frac{r_{k-1}^T r_{k-1}}{p_{k-1}^T A p_{k-1}} \\ x_k & \leftarrow & \displaystyle x_{k-1} + \alpha_{k-1} p_{k-1} \\ r_k & \leftarrow & \displaystyle r_{k-1} + \alpha_{k-1} A p_{k-1} \\ \beta_k & \leftarrow & \displaystyle \frac{r_k^T r_k}{r_{k-1}^T r_{k-1}} \\ p_k & \leftarrow & \displaystyle -r_k + \beta_k p_{k-1} \end{array}$$

Compute the step length

Update the iterate

Update the residual

Ensure A-conjugate directions

Update the descent direction

イロト 不得 とうせい かほとう ほ

A class of Limited Memory Preconditioners Application to variational ocean data assimilation Further improvements Systems in sequence Preconditioning technique

Descent directions

• are A-conjugate:

$$p_i^T A p_j \begin{cases} > 0 & \text{if } i = j \\ = 0 & \text{if } i \neq j \end{cases}$$

• belong to and span the Krylov subspace:

$$\mathcal{K}(A, r_0, k) = \operatorname{span}\{r_0, Ar_0, \dots, A^{k-1}r_0\}$$

伺 ト く ヨ ト く ヨ ト

э

A class of Limited Memory Preconditioners Application to variational ocean data assimilation Further improvements

Lanczos method

Systems in sequence Preconditioning technique

- \rightarrow Related to the CG method but allows in addition to approximate eigenpairs belonging to the Krylov subspace $\mathcal{K}(A, r_0, k)$:
 - Builds an orthonormal basis $Q = [q_1, \dots, q_k]$ of $\mathcal{K}(A, r_0, k)$ where $q_1 = r_0/\|r_0\|$

• Uses the Galerkin approach, i.e., computes (θ, z) such that $Q^T(Az - \theta z) = 0$

(日)

-

A class of Limited Memory Preconditioners Application to variational ocean data assimilation Further improvements Systems in sequence Preconditioning technique

Ritz pairs

Compute (θ, z) such that

$$Q^T(Az - \theta z) = 0$$

is equivalent to compute $(\boldsymbol{\theta},\boldsymbol{y})$ such that

$$Q^T A Q y = \theta y$$
 $(z = Q y, y \in \mathbb{R}^k, Q^T Q = I_n)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

If (θ_i, y_i) solves the eigenproblem above, then the pair

$$(heta_i, z_i)$$
 with $z_i = Qy_i$

is called Ritz pair of A w.r.t. the considered Krylov subspace

• Ritz-vectors are orthonormal and A-conjugate

A class of LMP Theoretical properties Particular cases

Outline

2 A class of Limited Memory Preconditioners (LMP)

3 Application to variational ocean data assimilation

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A class of LMP Theoretical properties Particular cases

From **BFGS**

The BFGS updating formula (inverse Hessian):

$$H_k = \left(I_n - \frac{y_k s_k^T}{y_k^T s_k}\right)^T H_{k-1} \left(I_n - \frac{y_k s_k^T}{y_k^T s_k}\right) + \frac{s_k s_k^T}{y_k^T s_k}$$

where $s_k = x_k - x_{k-1}$ and $y_k = \nabla f(x_k) - \nabla f(x_{k-1})$

applied to $f(x) = \frac{1}{2}x^TAx - b^Tx$ and with

 $s_k = x_k - x_{k-1} = lpha_{k-1} p_{k-1}$ (CG step) and $y_k = r_k - r_{k-1} = As_k$

writes

$$H_{k} = \left(I_{n} - \sum_{i=1}^{k} \frac{s_{i} s_{i}^{T}}{s_{i}^{T} A s_{i}} A\right) H_{0} \left(I_{n} - \sum_{i=1}^{k} A \frac{s_{i} s_{i}^{T}}{s_{i}^{T} A s_{i}}\right) + \sum_{i=1}^{k} \frac{s_{i} s_{i}^{T}}{s_{i}^{T} A s_{i}}$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

A class of LMP Theoretical properties Particular cases

To a general form

Letting $S = [s_1, \ldots, s_k]$, since $S^T A S$ is diagonal,

$$H_{k} = \left(I_{n} - \sum_{i=1}^{k} \frac{s_{i} s_{i}^{T}}{s_{i}^{T} A s_{i}} A\right) H_{0} \left(I_{n} - \sum_{i=1}^{k} A \frac{s_{i} s_{i}^{T}}{s_{i}^{T} A s_{i}}\right) + \sum_{i=1}^{k} \frac{s_{i} s_{i}^{T}}{s_{i}^{T} A s_{i}}$$

writes

$$H_{k} = \left[I_{n} - S(S^{T}AS)^{-1}S^{T}A\right]H_{0}\left[I_{n} - AS(S^{T}AS)^{-1}S^{T}\right] + S(S^{T}AS)^{-1}S^{T}$$

- \rightarrow How good is this matrix when used as a preconditioner with S containing a limited number of:
 - CG directions ?
 - or general A-conjugate directions (such as Ritz vectors) ?
 - or even any set of vectors such that $S^T A S$ is nonsingular ?

(日) (同) (目) (日)

A class of LMP Theoretical properties Particular cases

General LMP formulation

[Gratton, Sartenaer, Tshimanga, submitted to SIOPT]

Definition

- Let A and M be symmetric positive definite matrices of order n
- Let S be any n by k matrix of rank k, with $k \leq n$

The symmetric matrix:

$$\boldsymbol{H} = \left[\boldsymbol{I}_n - \boldsymbol{S}(\boldsymbol{S}^T \boldsymbol{A} \boldsymbol{S})^{-1} \boldsymbol{S}^T \boldsymbol{A}\right] \boldsymbol{M} \left[\boldsymbol{I}_n - \boldsymbol{A} \boldsymbol{S}(\boldsymbol{S}^T \boldsymbol{A} \boldsymbol{S})^{-1} \boldsymbol{S}^T\right] + \ \boldsymbol{S}(\boldsymbol{S}^T \boldsymbol{A} \boldsymbol{S})^{-1} \boldsymbol{S}^T$$

is called the Limited Memory Preconditioner (LMP)

 $M \equiv$ first-level preconditioner $H \equiv$ second-level preconditioner

(日) (同) (三) (三)

A class of LMP Theoretical properties Particular cases

Elementary properties of the LMP

$$H = \left[I_n - S(S^T A S)^{-1} S^T A\right] M \left[I_n - A S(S^T A S)^{-1} S^T\right] + S(S^T A S)^{-1} S^T$$

Proposition

- *H* is symmetric and positive definite
- *H* is invariant under a change of basis for the columns of S($S \leftarrow Z = SX$, X nonsingular)
- $H = A^{-1}$ if S is of order n (k = n)
- (Possibly cheap) factored form: $H = GG^T$ with

$$G = L - SR^{-1}R^{-T}S^{T}AL + SR^{-1}X^{-T}S^{T}L^{-T}$$

where

• $M = LL^T$ (L of order n) • $S^T AS = R^T R$ (R of order k) • $S^T L^{-T} L^{-1} S = X^T X$ (X of order k)

Preconditioners for Krylov solvers in data assimilation

A class of LMP Theoretical properties Particular cases

Connection with the existing L-BFGS form

(Let $M = I_n$)

• Using Y = AS and letting $B = Y^T S = S^T AS$ we have:

$$H = \left[I_n - SB^{-1}Y^T\right] \left[I_n - YB^{-1}S^T\right] + SB^{-1}S^T$$

 Letting R = triu(B) and D = diag(B), the classical L-BFGS update reads [Gilbert, Nocedal, 1993], [Byrd, Nocedal, Schnabel, 1994]:

$$\left[I_n - SR^{-T}Y^T\right] \left[I_n - YR^{-1}S^T\right] + SR^{-T}DR^{-1}S^T$$

This last formula is not invariant under transformations of S

(人間) ト く ヨ ト く ヨ ト

A class of LMP Theoretical properties Particular cases

Construction cost

$$H = \left[I_n - S(S^T A S)^{-1} S^T A\right] M \left[I_n - A S(S^T A S)^{-1} S^T\right] + S(S^T A S)^{-1} S^T$$

Let $S \leftarrow Z = SX$ (X nonsing.) with $Z^T A Z = I_n$, by invariance property:

$$H = \left(I_n - ZZ^T A\right) M \left(I_n - AZZ^T\right) + ZZ^T$$

or, if Y = AZ,

$$H = \left(I_n - ZY^T\right) M \left(I_n - YZ^T\right) + ZZ^T$$

- \rightarrow Step-by-step construction of Z (Gram-Schmidt) and Y:
 - k matrix-vector products by A
 - $\pm 3k^2n$ additional flops

- 4 同 6 4 日 6 4 日 6

A class of LMP Theoretical properties Particular cases

Application cost

$$Hq = \left(I_n - ZY^T\right) M \left(I_n - YZ^T\right) q + ZZ^T q$$

Computation of r = Hq

1.
$$f = Z^T q$$
 (costs $2kn$ flops)

2.
$$\bar{r} = M(q - Yf)$$
 (costs $2kn$ flops and one product by M)

3.
$$r = \bar{r} - Z(Y^T \bar{r} - f)$$
 (costs $4kn$ flops)

$\rightarrow\,$ one matrix-vector product by M and 8kn additional flops

イロト イポト イヨト イヨト

3

A class of LMP Theoretical properties Particular cases

Eigenvalues clusterization effect of the LMP

Proposition

- Let $0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ denote the eigenvalues of MA
- Let μ_1, \ldots, μ_n denote the eigenvalues of HA

Then $\{\mu_1, \ldots, \mu_n\}$ can be split in two subsets:

$$\begin{cases} \mu_j = 1 & \text{for } j \in \{n - k + 1, \dots, n\} \\\\ \lambda_j \le \mu_j \le \lambda_{j+k} & \text{for } j \in \{1, \dots, n-k\} \end{cases}$$

and

$$\kappa(HA) \le \frac{\max\{1, \lambda_n\}}{\min\{1, \lambda_1\}}$$

- \rightarrow At least k eigenvalues are clustered at 1
- $\rightarrow~$ The remaining part of the spectrum does not expand

イロト イポト イヨト イヨト 二日

Illustration

A class of LMP Theoretical properties Particular cases

• A = incomplete Cholesky factorization of the BCSSTK 27 matrix (Harwell-Boeing Collection)

• n = 1224

- $\lambda_{\min}(A) = 0.007$ and $\lambda_{\max}(A) = 36.0$
- $M = I_n$
- S constructed with 300 randomly generated vectors
 - \rightarrow Comparison of the eigen-distribution of A and HA

イロト イポト イヨト イヨト

-

 \rightarrow Part of the spectrum has been shifted to 1

 $\rightarrow~$ The remaining part of the spectrum does not expand

Image: A image: A

-

A class of LMP Theoretical properties Particular cases

Three particular cases

Remember that if the vectors in $S = [s_1, \ldots, s_k]$ are A-conjugate, then:

$$H = \left[I_n - S(S^T A S)^{-1} S^T A\right] M \left[I_n - A S(S^T A S)^{-1} S^T\right] + S(S^T A S)^{-1} S^T$$

simplifies to:

$$H = \left(I_n - \sum_{i=1}^k \frac{s_i s_i^T}{s_i^T A s_i} A\right) M \left(I_n - \sum_{i=1}^k A \frac{s_i s_i^T}{s_i^T A s_i}\right) + \sum_{i=1}^k \frac{s_i s_i^T}{s_i^T A s_i}$$

イロン 不同 とくほう イロン

3

A class of LMP Theoretical properties Particular cases

First case: the quasi-Newton LMP

Take $s_i = p_i$, i = 1, ..., k, the descent directions generated by a CG method

Proposition

The LMP built with $M = H_0$ and $S = [p_1, \ldots, p_k]$ writes

$$H_k = \left(I_n - \frac{p_k p_k^T A}{p_k^T A p_k}\right) H_{k-1} \left(I_n - \frac{A p_k p_k^T}{p_k^T A p_k}\right) + \frac{p_k p_k^T}{p_k^T A p_k}$$

 \rightarrow Amounts to the preconditioner proposed by Morales and Nocedal, 2000

-

A class of LMP Theoretical properties Particular cases

Second case: the spectral-LMP

Take $s_i = v_i$, i = 1, ..., k, eigenvectors of A (associated to λ_i)

Proposition

The LMP built with $M = I_n$ and $S = [v_1, \ldots, v_k]$ writes

$$H = \prod_{i=1}^{k} \left[I_n - \left(1 - \frac{1}{\lambda_i} \right) v_i v_i^T \right]$$

- \rightarrow Amounts to the preconditioner proposed by Fisher, 1998
- → Daily used in operational data assimilation systems but with Ritz pairs (θ_i, z_i) to approximate eigenpairs (λ_i, v_i) :

$$\tilde{H} = \prod_{i=1}^{k} \left[I_n - \left(1 - \frac{1}{\theta_i} \right) z_i z_i^T \right]$$

 \rightarrow "Inexact spectral-LMP" (!!! no more a member of our class of LMP !!!)

A class of LMP Theoretical properties Particular cases

Third case: the Ritz-LMP

Take $s_i = z_i$, i = 1, ..., k, Ritz vectors of A (associated to θ_i)

Proposition

The LMP built with $M = I_n$ and $S = [z_1, \ldots, z_k]$ writes

$$H = \prod_{i=1}^{k} \left[I_n - \left(1 - \frac{1}{\theta_i} - \omega_i^2 \right) z_i z_i^T - \omega_i (z_i q_{k+1}^T + q_{k+1} z_i^T) \right]$$

where q_{k+1} is a Lanczos vector and

$$|\omega_i| = \frac{\|Az_i - \theta_i z_i\|}{\theta_i}$$

for $i = 1, \ldots, k$

\rightarrow New preconditioner !!!

Gratton, Laloyaux, Sartenaer, Tshimanga, Weaver Preconditioners for Krylov solvers in data assimilation

A class of LMP Theoretical properties Particular cases

Inexact spectral-LMP versus Ritz-LMP

Compare

$$\tilde{H} = \prod_{i=1}^{k} \left[I_n - \left(1 - \frac{1}{\theta_i} \right) z_i z_i^T \right]$$

with

$$H = \prod_{i=1}^k \left[I_n - \left(1 - rac{1}{ heta_i} - \omega_i^2
ight) z_i z_i^T - \omega_i (z_i q_{k+1}^T + q_{k+1} z_i^T)
ight]$$

- \rightarrow The Ritz-LMP is an enriched version of the inexact spectral-LMP
- $\rightarrow\,$ The Ritz-LMP uses only one more vector than the inexact spectral-LMP

(日) (同) (三) (三)

A class of LMP Theoretical properties Particular cases

Proposition

$$\|\tilde{H} - H\|_2 \le k \left(\max_i (\omega_i^2) + \max_i (|\omega_i|) \right)$$

where

$$|\omega_i| = \frac{\|Az_i - \theta_i z_i\|}{\theta_i}$$

for i = 1, ..., k

 $\rightarrow\,$ The smaller the error in the Ritz pairs, the closer the inexact spectral-LMP to the Ritz-LMP

< ロ > < 同 > < 回 > < 回 > < □ > <

3

A class of LMP Theoretical properties Particular cases

Quasi-Newton LMP versus Ritz-LMP

Compare

$$H_k = \left(I_n - \frac{p_k p_k^T A}{p_k^T A p_k}\right) H_{k-1} \left(I_n - \frac{A p_k p_k^T}{p_k^T A p_k}\right) + \frac{p_k p_k^T}{p_k^T A p_k}$$

with

$$H = \prod_{i=1}^{k} \left[I_n - \left(1 - \frac{1}{\theta_i} - \omega_i^2 \right) z_i z_i^T - \omega_i (z_i q_{k+1}^T + q_{k+1} z_i^T) \right]$$

 $\rightarrow\,$ The quasi-Newton LMP is about twice more expensive in storage than the Ritz-LMP

э

A class of LMP Theoretical properties Particular cases

- CG descent directions and Ritz vectors span the same Krylov subspace
- $\bullet~$ The LMP H is invariant under transformations of S

Proposition

The Ritz-LMP and the quasi-Newton LMP are analytically equivalent when they are constructed with all available information (descent directions or Ritz vectors) from a CG-like method run on a same matrix

(日) (同) (三) (三)

A class of LMP Theoretical properties Particular cases

Comparison of the three particular cases:

- Quasi-Newton LMP
- Inexact spectral-LMP
- Ritz-LMP

on a realistic data assimilation system

(日) (同) (三) (三)

э

The data assimilation problem ncremental 4D-Var approach Numerical experiments

Outline

2 A class of Limited Memory Preconditioners (LMP)

3 Application to variational ocean data assimilation

4 Further improvements

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The data assimilation problem Incremental 4D-Var approach Numerical experiments

Motivation

- Numerical forecast is performed by integrating PDE describing the model of evolution of the system of interest (atmosphere, ocean, etc.)
- An important part of forecast systems is data assimilation which combines observations and model equations to produces the "best" initial condition
- Data assimilation belongs to the class of nonlinear least-squares problems
- Our interest: improve some optimization software involved in data assimilation in oceanography

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The data assimilation problem Incremental 4D-Var approach Numerical experiments

<ロ> <同> <同> < 回> < 回>

э

The data assimilation problem Incremental 4D-Var approach Numerical experiments

Four-Dimensional Variational (4D-Var) formulation

 \rightarrow Very large-scale nonlinear weighted least-squares problem:

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ||x - x_b||_{B^{-1}}^2 + \frac{1}{2} \sum_{j=0}^N ||\mathcal{H}_j(\mathcal{M}_j(x)) - y_j||_{R_j^{-1}}^2$$

where:

- Size of real (operational) problems: $x, x_b \in \mathbb{R}^{{10}^6}$, $y_j \in \mathbb{R}^{{10}^5}$
- The observations y_j and the background x_b are noisy
- \mathcal{M}_j are model operators (nonlinear)
- \mathcal{H}_j are observation operators (nonlinear)
- B is the covariance background error matrix
- R_j are covariance observation error matrices

伺 ト イ ヨ ト イ ヨ ト

The data assimilation problem Incremental 4D-Var approach Numerical experiments

Incremental 4D-Var

Let rewrite the problem as:

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ||\rho(x)||_2^2$$

Incremental 4D-Var is an inexact/truncated Gauss-Newton algorithm:

• It linearizes ρ around the current iterate \tilde{x} and solves

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|\rho(\tilde{x}) + J(\tilde{x})(x - \tilde{x})\|_2^2$$

where $J(\tilde{x})$ is the Jacobian of $\rho(x)$ at \tilde{x}

• It thus solves a sequence of linear systems (normal equations)

$$J^{T}(\tilde{x})J(\tilde{x})(x-\tilde{x}) = -J^{T}(\tilde{x})\rho(\tilde{x})$$

where the matrix is symmetric positive definite and varies

伺 ト く ヨ ト く ヨ ト

The data assimilation problem Incremental 4D-Var approach Numerical experiments

First-level preconditioner

$$\left(f(x) = \frac{1}{2}||\rho(x)||_{2}^{2} = \frac{1}{2}||x - x_{b}||_{B^{-1}}^{2} + \frac{1}{2}\sum_{j=0}^{N}||\mathcal{H}_{j}(\mathcal{M}_{j}(x)) - y_{j}||_{R_{j}^{-1}}^{2}\right)$$

At the background x_b :

$$J^{T}(x_{b})J(x_{b}) = B^{-1} + \sum_{j=0}^{N} \mathbf{M}_{j}^{T} \mathbf{H}_{j}^{T} R_{j}^{-1} \mathbf{H}_{j} \mathbf{M}_{j}$$

Choosing $M = B^{1/2} (B^{1/2})^T$ as first-level preconditioner yields:

$$(B^{1/2})^T J^T(x_b) J(x_b) B^{1/2} = I_n + \sum_{j=0}^N (B^{1/2})^T \mathbf{M}_j^T \mathbf{H}_j^T R_j^{-1} \mathbf{H}_j \mathbf{M}_j B^{1/2} \quad (=A_0)$$

 $\rightarrow\,$ Large amount of eigenvalues already clustered at 1

Gratton, Laloyaux, Sartenaer, Tshimanga, Weaver Preconditioners for Krylov solvers in data assimilation

イロト 不得 トイヨト イヨト 二日

The framework

The data assimilation problem Incremental 4D-Var approach Numerical experiments

[Tshimanga, Gratton, Weaver, Sartenaer, QJRMS, 2007]

- A realistic outer/inner loop configuration is considered:
 - 3 outer loops of Gauss-Newton (linearization)
 - 10 inner loops of conjugate gradient (on each of the 3 systems)
- The performance is measured by the value of the quadratic cost function
- The convergence of Ritz pairs is measured by the backward errors:

$$\frac{\|Az_i - \theta_i z_i\|}{\|A\| \|z_i\|}$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

The data assimilation problem Incremental 4D-Var approach Numerical experiments

Unpreconditioned runs

- \rightarrow The Ritz values for the three matrices are close together
- \rightarrow The extremal Ritz pairs have the smallest backward errors (better approx.)

• □ ▶ • □ ▶ • □ ▶ • □

The data assimilation problem Incremental 4D-Var approach Numerical experiments

Preconditioned runs

We consider the three forms:

- Quasi-Newton LMP
- Inexact spectral-LMP
- Ritz-LMP
- In order to
 - Analyse, for each, the effect of increasing the number of vectors in S (second and third systems)
 - Compare their performance (second system)

To this aim, an unpreconditioned conjugate gradient is run on the first system to produce 10 vectors from which $2,\ 6$ and 10 relevant ones are selected:

- Ritz-vectors are selected according to their convergence
- Descent directions are selected as the latest ones

< ロ > < 同 > < 回 > < 回 >

The data assimilation problem Incremental 4D-Var approach Numerical experiments

Quasi-Newton LMP

 \rightarrow Positive impact of an increase in the number of vectors in S

-

The data assimilation problem Incremental 4D-Var approach Numerical experiments

Inexact spectral-LMP

 \rightarrow Negative impact of an increase in the number of vectors in S

(Ritz pairs may be bad eigenpairs approximation)

The data assimilation problem Incremental 4D-Var approach Numerical experiments

Ritz-LMP

 \rightarrow Positive and faster impact of an increase in the number of vectors in S

Image: A = 1

The data assimilation problem Incremental 4D-Var approach Numerical experiments

Ranking LMP (2 vectors)

 \rightarrow Inexact spectral-LMP \equiv Ritz-LMP - Quasi-Newton LMP is worse

3

-

The data assimilation problem Incremental 4D-Var approach Numerical experiments

Ranking LMP (6 vectors)

→ Ritz-LMP is the best – Inexact spectral-LMP deteriorates

< A >

-

The data assimilation problem Incremental 4D-Var approach Numerical experiments

Ranking LMP (10 vectors)

- \rightarrow Quasi-Newton LMP \equiv Ritz-LMP
- \rightarrow Inexact spectral-LMP even worse than no preconditioning

Gratton, Laloyaux, Sartenaer, Tshimanga, Weaver Preconditioners for Krylov solvers in data assimilation

| 4 同 🕨 🖌 🖉 🖿 🖌 🗐

1D shallow water model Improving the starting point Using LMP again

Outline

2 A class of Limited Memory Preconditioners (LMP)

3 Application to variational ocean data assimilation

▲□ ▶ ▲ □ ▶ ▲ □

1D shallow water model Improving the starting point Using LMP again

What about the first system (A_0) ?

[Gratton, Laloyaux, Sartenaer, Tshimanga, in preparation]

- Appropriate starting point for CG
- \rightsquigarrow LMP again!

→ Illustration on a one-dimensional shallow water model

- 4 同 6 4 日 6 4 日 6

1D shallow water model Improving the starting point Using LMP again

One-dimensional shallow water model

- $\rightarrow\,$ Estimate the velocity and geopotential of a fluid flow over an obstacle:
 - 1D-grid with 250 mesh-points
 - x, x_b (background) $\in \mathbb{R}^{500}$
 - y_j (observations) $\in \mathbb{R}^{80}$
- $\rightarrow~$ Outer/inner loop configuration:
 - 3 outer loops of Gauss-Newton (linearization)
 - 5 inner loops of conjugate gradient (on each of the 3 systems)

- 4 同 2 4 日 2 4 日 2

1D shallow water model Improving the starting point Using LMP again

Gauss-Newton (with $x_0^0 = x_b$)

\rightarrow Computational cost dominated by 15 matrix-vector products

Gratton, Laloyaux, Sartenaer, Tshimanga, Weaver Preconditioners for Krylov solvers in data assimilation

1D shallow water model Improving the starting point Using LMP again

Improving the starting point x_0^0

Physical considerations:

- The ocean and the atmosphere exhibit an attractor
- Most of the variability can be explained in the "attractor subspace" (of low dimension r)

 \rightarrow Minimize first in this subspace (of basis L)

同 ト イ ヨ ト イ ヨ ト

1D shallow water model Improving the starting point Using LMP again

Empirical Orthogonal Functions (EOFs)

Construction of L:

- Let $\underline{x}^1, \ldots, \underline{x}^p \in \mathbb{R}^n$ be a set of state vectors (p = 200)
- Build $C = \frac{1}{p-1} \sum_{i=1}^{p} (\underline{x}^i \overline{x}) (\underline{x}^i \overline{x})^T$
- Compute the eigenvectors of C (EOFs)
- Store r eigenvectors corresponding to the largest eigenvalues
 - \rightarrow Already used in the reduced Kalman filters (SEEK filter)

イロト 不得 トイヨト イヨト 二日

Choice for r

 $(\lambda_i \searrow)$

Select *r* such that:

 $\frac{\sum_{i=1}^{r} \lambda_i}{\sum_{i=1}^{n} \lambda_i} \ge 0.8$

1D shallow water model Improving the starting point Using LMP again

э

For the shallow water model

 \rightarrow The five first EOFs are computed (r = 5)

1D shallow water model Improving the starting point Using LMP again

Ritz-Galerkin starting point

The solution of the first system in the subspace spanned by L:

$$x_0^0 = x_b + L(L^T A_0 L)^{-1} L^T b_0$$

- is called the Ritz-Galerkin starting point
- is used as starting point in the CG for the first system $(A_0x = b_0)$

 \rightarrow Computational cost dominated by r = 5 matrix-vector products

- 4 同 6 4 日 6 4 日 6

1D shallow water model Improving the starting point Using LMP again

First improvement

1D shallow water model Improving the starting point Using LMP again

LMP again!

$$H = \left[I_n - S(S^T A_0 S)^{-1} S^T A_0\right] M \left[I_n - A_0 S(S^T A_0 S)^{-1} S^T\right] + S(S^T A_0 S)^{-1} S^T$$

- with S = L (r EOFs)
- for free $(A_0L \text{ known})$

- better clustering
- better condition number

(日) (同) (三) (三)

э

1D shallow water model Improving the starting point Using LMP again

Second improvement

(Same H for the 3 systems)

1D shallow water model Improving the starting point Using LMP again

Thank you for your attention !

Thank you Serge !

Gratton, Laloyaux, Sartenaer, Tshimanga, Weaver Preconditioners for Krylov solvers in data assimilation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э