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Descriptor systems

Consider descriptor systems (differential-algebraic equations,
DAEs)

F (t , x , u, ẋ , p, ω) = 0, x(t) = x , t ∈ [t , t ]

. x–state, u–input, p–parameters, ω– uncertainties.

. Often one also considers outputs y = g(t , x , u).

. One is typically interested in feedback controllers (closed
loop) u(t) = k(x(t)), or better u(t) = k(y(t)).
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Closed loop vs. open loop
. In open loop control, we determine the control before and then

apply it dynamically.
. In closed loop control one reacts on the current state

u(t) = k(x(t)) or one partially observes the system by an
output y and react on this u(t) = k(y(t)).

. Closed loop control allows to react on disturbances, model or
computational errors.

. For fast systems or systems with uncertainty, closed loop is
essential.

. Typical tasks in closed loop control: Stabilization of system
that has become unstable or following a reference trajectory.

. Usually there is still freedom in the choice of the control u
which is typically fixed by minimizing a cost or energy
functional: optimal control.
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Optimal control of descriptor systems

Optimal control problem:

J (x , u) = M(x(t)) +

∫ t

t
K(t , x , u) dt = min!

subject to the DAE constraint

F (t , x , u, ẋ) = 0, x(t) = x .
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Drop size distributions
with S. Schmelter and M. Kraume (Chemical Eng., TU Berlin)
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Technological Application, Tasks

Chemical industry: pearl polymerization and extraction
processes

. Modelling of coalescence and breakage in turbulent flow.

. Numerical methods for coupled system of population balance
equations/fluid flow equations.

. Development of closed loop control methods.

. Model reduction and observer design.

. Control of real configurations via stirrer speed.

Goal: Achieve specified average drop diameter and small
standard deviation by real time-control of stirrer-speed.
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Active flow control

Project in collaborative research centre 557 at TU Berlin Control
of complex shear flows, (with F. Tröltzsch)
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Technological Application, Tasks

Control of detached turbulent flow on airline wing

. Test case: move recirculation bubble in backward step.

. Modelling of turbulent flow.

. Development of control methods for large scale coupled
systems.

. Model reduction and observer design.

. Optimal control of real configurations via blowing and sucking
of air in wing.

Ultimate goals: Force detached flow back to wing, control the
flow field behind the airplane.
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Other applications

. Control of automatic gearboxes (Project with Daimler AG)

. Electrical circuit simulation and control (project with NEC
Europe)

. Model reduction for electrical and acoustic field computations
(projects with CST GmbH and SFE GmbH)

. Control of vibrating structures.

. . . ..
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DAE control systems

After space discretization all these applications lead to DAE
control systems

F(t , x , ẋ , u) = 0,

or in the linear case (linearization along solutions)

E(t)ẋ(t) = A(t)x(t) + B(t)u(t) + f (t).

For the mathematical analysis we can use a behavior approach,
i.e., forming z = (x , u) (z = (x , u, y)) we obtain general
non-square DAEs

F (t , z, ż) = 0, E(t)ż = A(t)z.
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Why DAEs and not ODEs?

DAEs provide a unified framework for the analysis, simulation
and control of coupled dynamical systems (continuous and
discrete time).
. Automatic modelling leads to DAEs (Constraints at interfaces).

This is standard in electrical, mechanical and chemical
engineering. SIMULINK, SPICE, DYMOLA, . . . .

. Conservation laws lead to DAEs after space discretization.
(Conservation of mass, energy, volume, momentum).

. Coupling of multiphysical systems leads to DAEs.

. Coupling of solvers leads to DAEs (discrete time).

. Control problems are DAEs (behavior).

. DAEs allow to incorporate state constraints.
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Black-box modelling with DAEs

Modelling becomes extremely easy with DAEs, but:
. Numerical simulation does not always work, instabilities and

convergence problems occur (e.g. SIMULINK) !
. Consistent initialization is difficult.
. More regularity (smoothness) necessary than it seems.

Solution depends on derivatives of the state equations.
. Numerical drift-off phenomenon due to hidden constraints.
. Model reduction is difficult.
. Classical control approaches are difficult (non-proper transfer

functions).
Black-box DAE modelling pushes all difficulties into the
mathematical methods. In general the analytic and
numerical methods cannot handle this!
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How does one solve this today in practice?

. Simplified models and remodelling.

. Space discretization with coarse meshes.

. Identification and realization of black box models.

. Space discretization of fine model followed by model reduction
(mostly based on heuristic methods).

. Use of standard optimal control techniques for simplified
mathematical model.

. But do they work for these models?
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Is there anything to do ?

Why not just apply the classical Pontryagin maximum
principle?

. The solution of DAE problems may depend on derivatives of
the inputs.

. It is very difficult to find the right adjoint equations.

. DAEs may not be (uniquely) solvable for all u ∈ U and all f
and the initial conditions are restricted.

. For many years there was no maximum principle available.

. DAEs model state constraints and thus all the difficulties with
state constraints occur.
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Control theory for DAEs

. Linear constant coefficient d-index 1 case, Bender/Laub 87,
Campbell 87, M. 91, Geerts 93.

. Regularization to d-index 1, Bunse-Gerstner/M./Nichols 94,
Byers/Geerts/M. 97, Byers/Kunkel/M. 97.

. Linear variable coefficients d-index 1 case, Kunkel./M. 97.

. Semi-explicit nonlinear d-index 1 case, maximum principle, De
Pinho/Vinter 97, Devdariani/Ledyaev 99.

. Semi-explicit d-index 2, 3 case Roubicek/Valasek 02.

. Linear d-index 1, 2 case with properly stated leading term,
Balla/März, 02,04, Balla/Linh 05, Kurina/März 04, Backes 06.

. Multibody systems (structured and of d-index 3),
Büskens/Gerdts 00, Gerdts 03,06.

. General linear and nonlinear case Kunkel/M. 08.

Optimal control of descriptor systems 18 / 58



A crash course in DAE Theory/Numerics
For an appropriate remodelling, for the numerical solution of
general DAEs and for the design of controllers, we need
derivatives. Derivative arrays (Campbell 89).
We assume that derivatives of original functions can be obtained
via computer algebra or automatic differentiation.
Linear case: We put E(t)ẋ = A(t)x + f (t) and its derivatives up
to order µ into a large DAE

Mk(t)żk = Nk(t)zk + gk(t), k ∈ N0

for zk = (x , ẋ , . . . , x (k)).

M2 =

 E 0 0
A− Ė E 0
Ȧ− 2Ë A− Ė E

 , N2 =

 A 0 0
Ȧ 0 0
Ä 0 0

 , z2 =

 x
ẋ
ẍ

 .
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Theorem (Kunkel/M. 96)

Under some constant rank assumptions, for a linear DAE there
exist integers µ, a, d and v such that:
1. corank Mµ+1(t)− corank Mµ(t) = v .

2. rank Mµ(t) = (µ + 1)m − a− v on I, and there exists a smooth
matrix function Z2,3 (left nullspace of Mµ) with Z T

2,3Mµ(t) = 0.
3. The projection Z2,3 can be partitioned into two parts: Z2 (left

nullspace of [Mµ, Nµ]) so that the first block column Â2 of
Z ∗

2 Nµ(t) has full rank a and Z ∗
3 Nµ(t) = 0. Let T2 be a smooth

matrix function such that Â2T2 = 0, (right nullspace of Â2).
4. rank E(t)T2 = d = l − a− v and there exists a smooth matrix

function Z1 of size (n, d) with rank Ê1 = d, where Ê1 = Z T
1 E.
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Reduced problem
. The quantity µ is called the strangeness-index. It describes

the smoothness requirements for forcing or input functions.
. It generalizes the differentiation (d-)index to over- and

underdetermined DAEs (and counts differently).
. We obtain a numerically computable reduced system:

Ê1(t)ẋ = Â1(t)x + f̂1(t), d differential equations
0 = Â2(t)x + f̂2(t), a algebraic equations
0 = f̂3(t), v consistency equations

where Â1 = Z T
1 A, f̂1 = Z T

1 f , and f̂2 = Z T
2 gµ, f̂3 = Z T

3 gµ.
. The reduced system has the same solution set as the original

problem but now it has strangeness-index 0. Remodelling!
. We assume from now on this reduced system.
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Nonlinear Hypothesis

Hypothesis: There exist integers µ, r , a, d , and v such that
L = F−1

µ ({0}) 6= ∅.
We have rank Fµ;t ,x ,ẋ ,...,x (µ+1) = rank Fµ;x ,ẋ ,...,x (µ+1) = r , in a
neighborhood of L such that there exists an equivalent system
F̃ (zµ) = 0 with a Jacobian of full row rank r . On L we have
1. corank Fµ;x ,ẋ ,...,x (µ+1) − corank Fµ−1;x ,ẋ ,...,x (µ+1) = v .
2. corank F̃x ,ẋ ,...,x (µ+1) = a and there exist smooth matrix functions
Z2 (left nullspace of Mµ) and T2 (right nullspace of Â2 = F̃x ) with
Z T

2 F̃x ,ẋ ,...,x (µ+1) = 0 and Z T
2 Â2T2 = 0.

3. rank FẋT2 = d , d = `− a− v , and there exists a smooth
matrix function Z1 with rank Z T

1 Fẋ = d .
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Theorem (Kunkel/M. 02)

The solution set L forms a (smooth) manifold of dimension
(µ + 2)n + 1− r .
The DAE can locally be transformed (by application of the
implicit function theorem) to a reduced DAE of the form

ẋ1 = L(t , x1, x3), (d differential equations),
x2 = K(t , x1, x3), (a algebraic equations),
0 = 0 (v redundant equations).

The variables x3 represent undetermined components (controls).

Ideally we would like to get the model in this form directly,
otherwise this has to be computed at each time point.
We typically use the structure to get this cheaply.
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Numerical simulation.
We get consistent initial values by solving
Fµ(t0, x , ẋ , . . . , x (µ+1)) = 0 at t0 for the algebraic variable
(x , ẋ , . . . , x (µ+1)).
For the numerical integration of the DAE, e.g. with BDF, the
system

Fµ(ti + h, x , ẋ , . . . , x (µ+1)) = 0,

Z̃ T
1 F (ti + h, x , Dhx) = 0

is solved for the algebraic variable (xi , ẋi , . . . , x (µ+1)i ) at ti + h.
Here, Z̃1 is an approximation of Z1 at the desired solution, and

Dhxi =
1
h

k∑
l=0

αlxi−l ,

is the discretization by BDF or other finite difference operators.
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Analysis of numerical method

Theorem (Kunkel/M. 2002)

Let F satisfy the nonlinear Hypothesis.
Then, the occurring Jacobians of the system have full row rank
at the solution provided the step-size h is sufficiently small and
the approximation Z̃1 is sufficiently good.

. Simplified Gauss-Newton method can be used to solve the
nonlinear systems at every integration step.

. The order and convergence properties are as for ODEs.

. Method can be implemented by using local computations only.
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Linear quadratic optimal control
Cost functional:

J (x , u) =
1
2

x(t)T Mx(t) +
1
2

∫ t

t
(xT Wx + 2xT Su + uT Ru) dt ,

W = W T ∈ C0(I, Rn,n), S ∈ C0(I, Rn,l), R = RT ∈ C0(I, Rl,l),
M = MT ∈ Rn,n.
Constraint:

E(t)ẋ = A(t)x + B(t)u + f (t), x(t) = x ,

E ∈ C1(I, Rn,n), A ∈ C0(I, Rn,n), B ∈ C0(I, Rn,l), f ∈ C0(I, Rn),
x ∈ Rn.
Here: Determine optimal controls u ∈ U = C0(I, Rl).
More general spaces, output controls, and also nonsquare
E , A are possible.
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Calculus of variations, linear ODEs (E=I)

Introduce Lagrange multiplier function λ(t) and couple constraint
into cost function, i.e. minimize

J̃ (x , u, λ) =
1
2

x(t)T Mx(t) +
1
2

∫ t

t
(xT Wx + 2xT Su + uT Ru

+ λT (ẋ − Ax + Bu + f ) dt .

Consider variations x + δx , u + δu and λ + δλ.
For a minimum the cost function has to go up in the
neighborhood, so we get optimality conditions (Euler-Lagrange
equations):
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Optimality system

Theorem
If (x , u) is a solution to the optimal control problem, then there
exists a Lagrange multiplier function λ ∈ C1(I, Rn), such that
(x , λ, u) satisfy the optimality boundary value problem

(a) ẋ = Ax + Bu + f , x(t) = x ,

(b) λ̇ = Wx + Su − AT λ, λ(t) = −Mx(t),
(c) 0 = ST x + Ru − BT λ.
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Naive Idea for DAEs

Replace the identity in front of x by E(t) and then do the analysis
in the same way.
For DAEs the formal optimality system could be

(a) Eẋ = Ax + Bu + f , x(t) = x
(b) d

dt (E
T λ) = Wx + Su − AT λ, (ET λ)(t) = −Mx(t),

(b) 0 = ST x + Ru − BT λ.

. In general not true. Counterexamples: Backes 2006,
Kunkel/M. 2008

. One has to guarantee that the resulting adjoint equation for λ
has a unique solution, but it may not.

. The formal boundary conditions may not be consistent.
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Solution space

To derive optimality conditions for DAEs, we need the right
solution space for x . (Recall that we are in the reduced case.)

X = C1
E+E(I, Rn) =

{
x ∈ C0(I, Rn) | E+Ex ∈ C1(I, Rn)

}
,

where E+ denotes the Moore-Penrose inverse of the matrix
valued function E(t), i.e. the unique matrix function that satisfies
the Penrose axioms.

EE+E = E , E+EE+ = E+, (EE+)T = EE+, (E+E)T = E+E

The input space U is usually a set of piecewise continuous
functions (or a space of distributions.)
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Necessary optimality condition

Theorem (Kunkel/M. 08)

Consider the linear quadratic DAE optimal control problem with a
consistent initial condition. Suppose that the system has µ = 0
as a behavior system and that Mx(t) ∈ cokernel E(t).
If (x , u) ∈ X× U is a solution to this optimal control problem,
then there exists a Lagrange multiplier function λ ∈ C1

E+E(I, Rn),
such that (x , λ, u) satisfy the optimality boundary value problem

E d
dt (E

+Ex) = (A + E d
dt (E

+E))x + Bu + f , (E+Ex)(t) = x ,

ET d
dt (EE+λ) = Wx + Su − (A + EE+Ė)T λ,

(EE+λ)(t) = −E+(t)T Mx(t),
0 = ST x + Ru − BT λ.
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Remarks

. If a minimum exists, then it satisfies the optimality system.

. If a unique solution to the formal optimality system exists, then
x , u are the same, λ may be different.

. The optimality DAE may have µ > 0. Then further consistency
conditions or smoothness requirements arise.

. The condition that the original system has µ = 0 as a behavior
system is not necessary if the cost function is chosen
appropriately.

. Under some extra conditions (invertibility of the weight matrix
R, etc) the solution is a feedback control (Riccati).

. In general one has to solve the optimality boundary value
problem.
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Reduced strangeness-free system

Recall that the DAE can locally be transformed to a reduced
DAE of the form

ẋ1 = L(t , x1, u), (d differential equations),
x2 = K(t , x1, u), (a algebraic equations),
0 = 0 (v redundant equations).
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Optimality conditions
Theorem (Kunkel/M. 2008)

Consider the nonlinear optimal control problem and assume that
µ = 0 for the system in behavior form, then in terms of the
reduced DAE, the local optimality system is

(a) ẋ1 = L(t , x1, u), x1(t) = x1,
(b) x2 = R(t , x1, u),

(c) λ̇1 = Kx1(t , x1, x2, u)T − Lx1(t , x1, x2, u)T λ1 −Rx1(t , x1, u)T λ1,
λ1(t) = −Mx1(x1(t), x2(t))T

(d) 0 = Kx2(t , x1, x2, u)T + λ2,
(e) 0 = Ku(t , x1, x2, u)T − Lu(t , x1, u)T λ1 −Ru(t , x1, u)T λ2,
(f) γ = λ1(t)

Here λ1, λ2 are Lagrange multipliers associated with x1, x2 and γ
is associated with the initial value constraint.
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Remarks

. These are local results.

. All the results can be generalized to general nonsquare
nonlinear systems.

. End point conditions for x can be included.

. Input and state inequality constraints can be included to give a
maximum principle.
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Numerical Methods

Linear case: Given E(t), A(t), B(t), f (t) in the DAE and
S(t), R(t), W (t), M from the cost functional.
The resulting linear optimality system has the form

(a) Ê1ẋ = Â1x + B̂1u + f̂1, (Ê+
1 Ê1x)(t) = x

(b) 0 = Â2x + B̂2u + f̂2,
(c) d

dt (Ê
T
1 λ1) = Wx + Su − ÂT

1 λ1 − ÂT
2 λ2,

λ1(t) = −[ Ê+
1 (t)T 0 ]Mx(t),

(d) 0 = ST x + Ru − B̂T
1 λ1 − B̂T

2 λ2.

where Êi , Âi , B̂i , f̂i are obtained by projection with smooth
orthogonal projections Zi from the derivative array.
An analogous structure arises locally in the nonlinear case.
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Numerical Problems

. In the implementation of our numerical integration codes we
may use nonsmooth projectors Z T

1 , Z T
2 , since it would be too

expensive to carry smooth projectors along.
. For numerical forward (in time) simulation, it is enough that we

know the existence of smooth projectors.
. Integration methods like Runge-Kutta or BDF do not see the

nonsmooth behavior.
. But the adjoint variables (Lagrange multipliers) depend on

these projections and their derivatives.

However, even if Z T
1 , Z T

2 are nonsmooth, Z1Z T
1 and Z2Z T

2 are
smooth.
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Smooth optimality system

. Choose

ÊT
1 λ1 = ET Z1λ1 = ET Z1Z T

1 Z1λ1 = ET Z1Z T
1 λ̂1.

. With λ̂1 = Z1λ1 we obtain smooth coefficients for λ̂1.

. However, we have to add the condition that λ̂1 ∈ range Z1 to
the system.

. If Z ′
i completes Zi to a full orthogonal matrix (we compute

these anyway when doing a QR or SVD computation) then
these conditions can be expressed as

Z ′
i
T λ̂i = 0, i = 1, 2
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New linear optimality system

For the numerical solution we use the optimality system.

(a) Ê1ẋ = Â1x + B̂1u + f̂1, (Ê+
1 Ê1x)(t) = x ,

(b) 0 = Â2x + B̂2u + f̂2,
(c) d

dt (E
T Z1Z T

1 λ̂1) = Wx + Su − AT λ̂1 − [[0I|00| · · · |00]NT
µ λ̂2,

(Z T
1 λ̂1)(t) = −[ Ê+

1 (t)T 0 ]Mx(t),
(d) 0 = ST x + Ru − BT λ̂1 − [0I|00| · · · |00]NT

µ λ̂2

(e) 0 = Z ′
1

T λ̂1,

(f) 0 = Z ′
2

T λ̂2.

All quantities are available for all time steps.
An analogous system can be derived for each Gauss-Newton
step in the nonlinear case.
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Are we finished?
. Optimality conditions (linear and nonlinear) and maximum

principle for general DAEs have been derived.
. But we are not there yet.
. To compute the strangeness-free form is difficult in general

and impossible for large scale problems. Three O(n3)
nullspace computations per time step. But in many problem
(e.g. in the two flow control problems) we can get this for free
using the structure.

. The real challenge is the optimality boundary value problem.

. Currently for large scale problems we can only use model
reduction (linear case), small scale realization or

. adaptive discretization of Input/Output maps via Adaptive FEM
(DWR) Becker/Rannacher 02, Dissertation Schmidt ’07,
Heiland/M./Schmidt 2009
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Discretization of Input/Ouput maps
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G : u 7→ y

Figure: Schematic illustration of an input/output map, corresponding to
a physical system, given e.g. by a set of equations or a numerical
solver (black-box approach).
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Model red. vs. i./o. map discret.
Current approaches:

. Semi-discretization in space followed by model reduction via
proper orthogonal decomposition or balanced truncation.

. High costs for model reduction method.

. But the forward space-time solver is only a tool.

. We are really interested in the behavior of the i./o. map.

. So we should discretize the i./o. map and not the forward
problem.

. Theoretical basis, error estimation, adaptive schemes, etc.
Dissertation Schmidt ’07

. Application to driven cavity flow, Diploma thesis Heiland 2009

. Application to stirred liquid/liquid systems, current dissertation
of J. Heiland.
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Oseen problem for 2D driven cavity
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Figure: Schematic illustration of a 2D driven cavity flow and the
domains of control and observation, Ωc and Ωm, respectively.
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Numerical results
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Figure: Illustration of the x1-component of the output signals
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Flow control
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Simulated flow with FEATFLOW

Space discretization leads to an large control system of
nonlinear DAEs.

Optimal control of descriptor systems 50 / 58



Controlled flow

Henning/ Kuzmin/M./Schmidt/Sokolov/Turek ’07. Movement of
recirculation bubble following reference curve via controller built
into FEATFLOW.
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Numerical/experimental results

Results obtained with the DFG Collaborative research center
SFB 557 TU Berlin.

. Closed loop separation control Becker/King/Petz/Nitsche 07.

. Computational investigation of separation for high lift airfoil
flows Schatz/Günther/Thiele ’07
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Experiment/Simulation
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Lift optimization
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Flow field for different excitations
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Conclusions
. Control problems for general linear and nonlinear DAEs arise

in many applications.
. In practice models are often generated automatically.
. Remodelling is necessary.
. Model based feedback control for PDEs is a major challenge.
. We have made some progress in the DAE control theory.
. Without using the structure we cannot solve large scale

problems.
. Model reduction or model approximation is essential.
. Methods have been implemented in several applications (not

always in a satisfactory way).
. Text book. P. Kunkel and V. Mehrmann, Differential algebraic

equations. Analysis and numerical solution. European
Mathematical Society, Zürich, 2006.
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Thank you very much
for your attention.
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