Software for Integer and Nonlinear Optimization

Sven Leyffer, leyffer@mcs.anl.gov Mathematics & Computer Science Division Argonne National Laboratory

Roger Fletcher & Jeff Linderoth

Advanced Methods and Perspectives in Nonlinear Optimization and Control Toulouse, February 3–5, 2010

Overview

1. Integer Nonlinear Optimization Applications Problem Statement & Applications DOE Grand-Challenge Application

2. Overview of Existing MINLP Methods

Branch-and-Bound Outer Approximation Branch-and-Cut

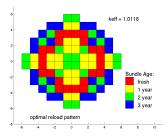
3. NLP Solver for Branch-and-Bound

Motivation Better Branching for MINLP Faster NLPs for MINLP

MINLP Problem & Applications

Mixed Integer Nonlinear Program (MINLP)

 $\begin{array}{ll} \underset{x,y}{\text{minimize}} & f(x,y) \\ \text{subject to} & c(x,y) \leq 0 \\ & y \in Y \text{ integer} \end{array}$



Applications:

- distillation column design
- radiation therapy treatment planning
- network design under interdiction
- reactor core reload operation
- gas transmission network design
- optimal discrete control [Sager]

Leyffer (Argonne)

Blackout Prevention in National Power Grid

2003 blackout: before and during

- 2003 blackout cost \$4-10 billion and affected 50 million people
- prevent using contingency analysis
 - find least number of lines whose removal results in failure
 - binary variables model removal of lines
 - nonlinearities model power flow
 - results in large nonconvex integer optimization problem
- current analysis limited to 10s of lines

Properties of Electricity Grid Models

Efficient management of electric grid

- optimal power flow problem in network
- predict effects of network expansion/failure

Variables (complex for alternating current)

- voltage: difference in electric potential between nodes
- current: flow of electricity
- power: quantity of energy transferred

S = P + iQ real/reactive power use polar coordinates

Expression for real power (reactive power similar):

$$\mathcal{P}_{ij} =
u_i^2 \left(y_{ij} \cos(\zeta_{ij}) + g_{ij} \right) -
u_i
u_j y_{ij} \cos(\zeta_{ij} + heta_i - heta_j)$$

 \Rightarrow nonconvex mixed-integer nonlinear program (MINLP)

Challenges of Electricity Grid Models

1. Nonconvexities

- no valid bounds
- inconsistent subproblems

2. Size

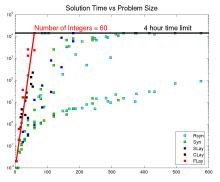
- 10⁵ lines nodes today
- wind/solar adds order of magnitude

3. Uncertainty

- supply: goal 20% wind/solar
- demand: plug-in cars
- supply & demand: zero-energy buildings

The Curse of Exponentiality

Integer optimization has exponential complexity growth



Parallel MINLP

- 100s of processors get 80% efficiency
- 100,000 processors ... research issues
- perfect speed-up only doubles problem size

Time vs number of integers

Parallel computing alone not enough: need new methods!

Overview

Integer Nonlinear Optimization Applications Problem Statement & Applications DOE Grand-Challenge Application

2. Overview of Existing MINLP Methods

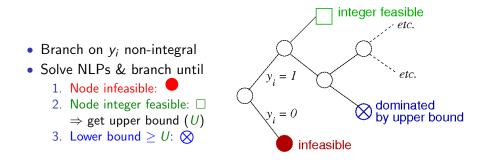
Branch-and-Bound Outer Approximation Branch-and-Cut

3. NLP Solver for Branch-and-Bound

Motivation Better Branching for MINLP Faster NLPs for MINLP

MINLP Branch-and-Bound [Dakin, 1965]

Solve relaxed NLP ($0 \le y \le 1$ continuous relaxation) ... solution value provides lower bound



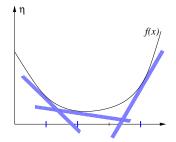
Search until no unexplored nodes on tree

Outer Approximation [Duran & Grossmann, 1986]

NLP subproblem y_j fixed:

$$\mathsf{NLP}(y_j) \begin{cases} \min_{x} f(x, y_j) \\ \text{s.t.} c(x, y_j) \leq 0 \\ x \in X \end{cases}$$

linearize f, c about $(x_j, y_j) =: z_j$ \Rightarrow MINLP $(P) \equiv$ MILP (M)

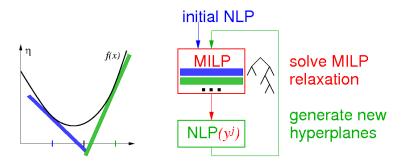


$$(M) \begin{cases} \begin{array}{ll} \underset{z=(x,y),\eta}{\text{minimize}} & \eta \\ \text{subject to} & \eta \ge f_j + \nabla f_j^T (z-z_j) & \forall y_j \in Y \\ & 0 \ge c_j + \nabla c_j^T (z-z_j) & \forall y_j \in Y \\ & x \in X, \ y \in Y \text{ integer} \end{cases} \end{cases}$$

but need linearizations $\forall y_j \Rightarrow$ solve relaxations of (M)

Outer Approximation [Duran & Grossmann, 1986]

Alternate between solve $NLP(y_i)$ and MILP relaxation

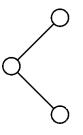


 $\mathsf{MILP} \Rightarrow \mathsf{lower \ bound}; \qquad \mathsf{NLP} \Rightarrow \mathsf{upper \ bound};$

 \ldots MILP solution is bottleneck \ldots no hot-starts for MILP

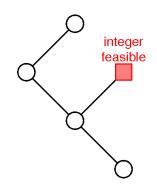
AIM: avoid re-solving MILP master (*M*)

• Take initial MILP tree



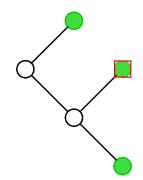
AIM: avoid re-solving MILP master (*M*)

- Take initial MILP tree
- interrupt MILP, when y_j found \Rightarrow solve NLP (y_j) get x_j



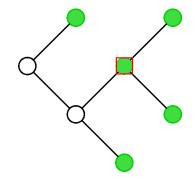
AIM: avoid re-solving MILP master (*M*)

- Take initial MILP tree
- interrupt MILP, when y_j found
 ⇒ solve NLP(y_j) get x_j
- linearize f, c about (x_j, y_j) \Rightarrow add linearization to tree



AIM: avoid re-solving MILP master (M)

- Take initial MILP tree
- interrupt MILP, when y_j found
 ⇒ solve NLP(y_j) get x_j
- linearize f, c about (x_j, y_j) \Rightarrow add linearization to tree
- continue MILP tree-search



... until lower bound \geq upper bound

Existing Solvers for MINLP

- 1. Branch-and-Bound:
 - GAMS-SBB, MINLPBB standard branch-and-bound
 - BARON [Sahinidis], Couenne [Belotti] global nonconvex MINLPs
- 2. Outer Approximation (CPLEX as MIP solver):
 - DICOPT++ [Grossmann] some heuristics for nonconvex
 - ECP [Westerlund] extended cutting plane method
- 3. LP/NLP-Based Branch-and-Bound:
 - FilMINT: FilterSQP + MINTO [Linderoth et al]
 - BONMIN [IBM/CMU]
- 4. Lessons from FilMINT & BONMIN
 - advanced MILP techniques (MINTO, CBC): cuts, heuristics
 - aggressive cut (linearization) generation \simeq Kelley's CP method
 - cut management (remove inactive constraints from LPs)

Performance Profile of MINLP Solvers



Probability that solver *s* at most 2^x times worse than best Goal: Improve MINLPBB & get it closer to the top!

Leyffer (Argonne)

Integer and Nonlinear Optimization

Motivation

Exploiting NLP Warm-Starts for MINLP

Motivation:

- CPLEX: improvement in LP important in MIP advances
- Extended Cutting Plane method $10 \times$ faster than modern NLP!
- Avoid cutting-plane LPs that grow in size

Opportunities:

- 1. Better branching decisions: explore alternatives
- Faster inexact solves vs. lack of bounds.

Experiments:

- 56 medium-sized convex MINLPs from IBM/CMU & MacMINLP
- 30-minute time limit (very short for MINLP!)

Maximum-Fractional Branching for MINLP

Goal: Find good integer to branch on

- Change new child nodes as much as possible
- Avoid symmetric trees \Rightarrow identical work

Given solution to parent node

- Find all fractional integers ... denote candidates by y_j , $j \in C$
- Select variable that is closest to 0.5:

$$\max_{j \in C} \{ \lfloor y_j \rfloor + 1 - y_j , y_j - \lfloor y_j \rfloor \}$$

... only marginally better than random branching!

Pseudo-Cost Branching [Gupta and Ravindran, 1985]

- $f^p = parent optimum$
 - solve a child & get f_i^+ or f_i^-
 - average pseudo-cost of y_j during tree-search:

$$\mathsf{pc}_j^+ = \frac{f_j^+ - f^p}{\lfloor y_j \rfloor + 1 - y_j} \text{ or } \mathsf{pc}_j^- = \frac{f_j^- - f^p}{y_j - \lfloor y_j \rfloor}$$

• compute score_i for all candidates $y_i \in C$:

$$= (1 - \mu) \quad \min(\mathsf{pc}_i^-(y_i - \lfloor y_i \rfloor), \mathsf{pc}_i^+(y_i - \lfloor y_i + 1 \rfloor)) \\ + \mu \quad \max(\mathsf{pc}_i^-(y_i - \lfloor y_i \rfloor), \mathsf{pc}_i^+(y_i - \lfloor y_i + 1 \rfloor))$$

• branch on variable *i* that maximizes score_{*i*}

initialize pseudo-costs with strong branching ...

Strong Branching for MINLP

Given solution to parent node NLP, P, with optimum f^p

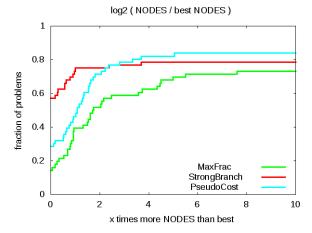
- 1. find all non-integral integer variables $y_i, i \in C$
- 2. for every candidate $y_i \in C$ solve two child NLPs
 - down NLP: $P + \{y_i = \lfloor y_i \rfloor\} \Rightarrow f_i^-$
 - up NLP: $P + \{y_i = \lfloor y_i \rfloor + 1\} \Rightarrow f_i^+$
- 3. compute score;

 $= (1 - \mu) * \min(f_i^- - f^p, f_i^+ - f^p) + \mu * \max(f_i^- - f^p, f_i^+ - f^p)$

4. branch on variable *i* that maximizes score_{*i*} ... where $\mu = 1/6$ Maximize the change in the objective

 \Rightarrow variables that changes problem the most [Achterberg et al.]

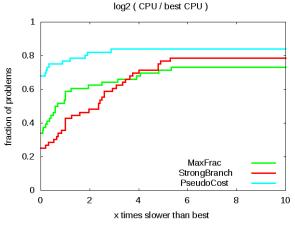
MINLP Performance Profile: Strong-Branching (Nodes)



Number of nodes solved by branching alternatives

Strong branching reduces tree significantly ... less robust in 30 minutes

MINLP Performance Profile: Strong-Branching (CPU)



CPU time for branching alternatives

Jeff: Told ya ... NLP solvers are too slow!

Leyffer (Argonne)

Integer and Nonlinear Optimization

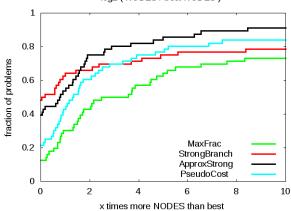
Alternatives to Strong Branching for MINLP

Strong branching: two expensive NLPs per integer per node

Approximate Strong Branching

- perform only a few iterations of NLP solver
- easy: set MaxIter=1 ... single QP solve
- evaluate objective at solution of QP
- single QP estimates nonlinear effect of branching
- no lower bounds from QP: over & underestimate NLPs
 - ... depends on nonlinear functions

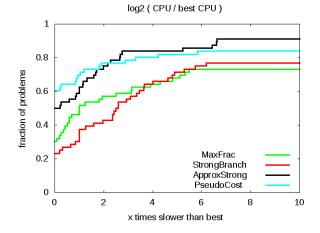
Performance: Approximate Strong-Branching



log2 (NODES / best NODES)

Probability that solver *s* at most 2^x more nodes than best

Performance: Approximate Strong-Branching



Probability that solver s at most 2^x times slower than best

Leyffer (Argonne)

Alternatives to Strong Branching for MINLP

Reliability Branching

- initialize pseudo-costs with approximate strong branching
- count number of updates of pseudo-cost i: n_{PCi}
- IF *n_{PCi}* ≤ 2 THEN

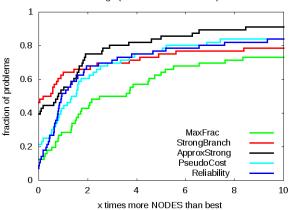
score; from approximate strong branching

ELSE

score; from pseudo-costs

• $n_{PCi} \leq 2$ has not been tuned ...

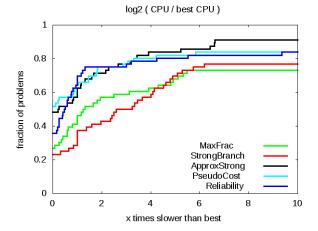
MINLP Performance Profile (Nodes)



log2 (NODES / best NODES)

Probability that solver s at most 2^x more nodes than best

MINLP Performance Profile (CPU)



Probability that solver s at most 2^x times slower than best Reliability & ApproxStrong branching work well

Leyffer (Argonne)

Integer and Nonlinear Optimization

Warm-Starts and Hot-Starts for $NLP \neq LP$

NLP solvers are iterative, e.g. SQP \Rightarrow matrices $\nabla c(x, y)$, ... change

• nonlinear effects \Rightarrow replace "LP basis" by KKT system

$$\begin{bmatrix} H_k & -A_k \\ A_k^T & 0 \end{bmatrix}$$

where $H_k = \nabla^2 \mathcal{L}(x_k, y_k, \lambda_k)$ and $A_k = \nabla c(x_k, y_k)$

- A_k contains active constraint normals
- KKT factors are always out-of-date:
 - factors at $z_k = (x_k, y_k)$ generate step to $z_{k+1} = z_k + d$
 - check convergence at z_{k+1} ⇒ overwrite A_k ← A_{k+1} ⇒ factors inconsistent

... not clear how to re-use factors (re-compute?)

Preliminary Numerical Results: NLP vs Hot-QP

CPU times for root node and first set of NLPs

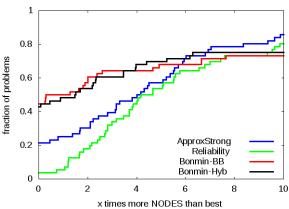
problem	# ints	Full NLP	Single QP	Hot QP
stockcycle	480	4.08	3.32	0.532
RSyn0805H	296	78.7	69.8	1.94
SLay10H	180	18.0	17.8	1.25
Syn30M03H	180	40.9	14.7	2.12

Hot-QP: Solve NLP, re-factor last QP at z_{k+1} , use factors multiple times

- Not clear how good the resulting estimates are
- Loose bounds in tree \Rightarrow re-compute NLP every 10th node?
- Orders of magnitude savings, but many open questions!

... not yet fully implemented

Comparison to Bonmin (NLP-nodes)

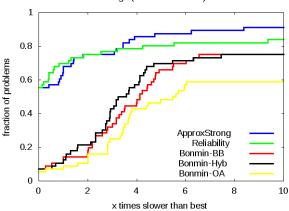


log2 (NODES / best NODES)

Bonmin solves many fewer NLPs (good if NLPs are hard).

Leyffer (Argonne)

Comparison to Bonmin (CPU-time)



log2 (CPU / best CPU)

Warm-started NLP pays off hugely (only re-use reduced Hessian)!!!

Leyffer (Argonne)

Conclusions & Future Work

Benefits of Better NLP Solves for MINLP

- reliability & pseudo-cost branching work well
- strong branching too expensive (NLP solves)
- instrument NLP solvers for MINLPs (hot-starts)
- get orders of magnitude speed-up from NLP solvers
- Hot-QP branching: hot-started dual active-set QP

Challenges & Future Work for NLP

- update rhs in hot-started QPs (ideas from SOC steps)
- use inexact NLP solves more in tree-search! ... easy???
- can we use inexact solves to generate cuts?

... hard!!!