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Parametric Optimization

Let Y ⊂ Rp be a compact set, called the parameter set.

Let K ⊂ Rn × Rp be the set:

K := { (x,y) : y ∈ Y ; hj(x,y) ≥ 0, j = 1, . . . ,m },

for some continuous functions hj : Rn × Rn → R.

Consider the following optimization problem:

J(y) := inf
x
{ f (x,y) : x ∈ Ky},

where for each y ∈ Y, the Ky ⊂ Rn is defined by:

Ky := {x ∈ Rn : (x,y) ∈ K }
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Parametric optimization is concerned with:

• the global optimal value function y 7→ J(y), and

• the global minimizer set function y 7→ x∗i (y)

• the optimal dual multiplier set function y 7→ λ∗j (y) associated
with the constraint hj(x,y) ≥ 0.

In general, getting full information is impossible, and one is
satisfied with local information (e.g. sensitivity analysis) around
some (even local) minimizer x∗(y) ∈ Ky, y ∈ Y. (See e.g. the
book by Bonnans and Shapiro.)

This talk
For polynomial optimization much more is possible!
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The "joint+marginal" approach

Let ϕ be a Borel probability measure on Y, with a positive
density with respect to the Lebesgue measure on the smallest
affine variety that contains Y. For instance,

ϕ(B) :=

(∫
Y

dy
)−1 ∫

B
dy, ∀B ∈ B(Y),

is uniformly distributed on Y.

For a discrete set of parameters Y (finite or countable) take for
ϕ a discrete probability measure on Y with strictly positive
weight at each point of the support.

Sometimes, e.g. in the context of optimization with data
uncertainty, ϕ is already specified.
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A related infinite-dimensional linear program:

Consider the infinite-dimensional LP:

P : ρ := inf
µ∈M(K)

{∫
K

f dµ : πµ = ϕ

}
where: M(K) is the of Borel probability measures on K, and

π : M(K)→ M(Y) is the projection (or, marginal) on Y.

Whence the name "joint+marginal"-approach since:

- µ is a joint distribution on the variables x AND the parameters
y.
- ϕ is the marginal of µ on Y (fixed, as a constraint on µ).
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The dual P∗ is the infinite-dimensional LP:

P∗ : ρ∗ := sup
g ∈C(Y)

∫
Y

g(y) dϕ(y)

f (x,y)− g(y) ≥ 0 ∀(x,y) ∈ K.

where C(Y) is the set of continuous functions on Y.

In other words, among the continuous functions g on Y such
that:

f (x,y) ≥ g(y) ∀x ∈ Ky,

one searches for the one that maximizes
∫

Y gdϕ.
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Why those LPs?

We assume that K is compact.

As we shall see ....
Any optimal solution µ∗ of the primal P encodes all information
on the optimal solutions x∗(y) of Py.

Similarly ....
Ther is no duality gap ρ = ρ∗ and so, in particular, the optimal
value function y 7→ J(y) of Py can be nicely approximated by
polynomials.

Jean B. Lasserre



Why those LPs?

We assume that K is compact.

As we shall see ....
Any optimal solution µ∗ of the primal P encodes all information
on the optimal solutions x∗(y) of Py.

Similarly ....
Ther is no duality gap ρ = ρ∗ and so, in particular, the optimal
value function y 7→ J(y) of Py can be nicely approximated by
polynomials.

Jean B. Lasserre



Theorem (The primal side ...)

Assume that K is compact and Ky 6= ∅ for every y ∈ Y. Let

X∗y := {x ∈ Rn : f (x,y) = J(y)}, y ∈ Y. Then:

(a) ρ =

∫
Y

J(y) dϕ(y) and P has an optimal solution.

(b) For every optimal solution µ∗ of P, and for ϕ-almost all
y ∈ Y, there is a probability measure ψ∗(dx |y) on Rn,
concentrated on X∗y, such that:

µ∗(C × B) =

∫
B
ψ∗(C |y) dϕ(y), ∀B ∈ B(Y), C ∈ B(Rn).
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continued ...
(c) Assume that for ϕ-almost all y ∈ Y, the set of minimizers X∗y
is the singleton {x∗(y)} for some x∗(y) ∈ Ky. Then there is a
measurable mapping g : Y→ Ky such that

g(y) = x∗(y) for every y ∈ Y ; ρ =

∫
Y

f (g(y),y) dϕ(y),

and for every α ∈ Nn, and β ∈ Np:∫
K

xαyβ dµ∗(x,y) =

∫
Y

yβ g(y)α dϕ(y).
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Theorem (The dual side ...)
(a) There is no duality gap, i.e.,

ρ = ρ∗ =

∫
Y

J(y) dϕ(y),

(b) One may use polynomials of R[y] to approximate ρ∗.

(c) Let (pi) ⊂ R[y] be any maximizing sequence. Then:
L1-norm convergence:

as i →∞,
∫

Y
|J(y)− pi(y) |dϕ(y) → 0

ϕ-almost sure convergence: Let p̃i := maxk=0,..,i pi . Then

as i →∞, p̃i → J ϕ-almost surely in Y
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Polynomial Parametric Optimization

In general, P and P∗ are intractable!

However .... when:
- Y and K, are basic semi-algebraic sets, and:
- either one already knows the moments of ϕ, or Y is simple
enough (e.g. a box, a simplex, a hyper-sphere) so that they can
be computed.

.... then one can approximate the optimal value ρ of P, and:

• The optimal value mapping y 7→ J(y)
• The global minimizer mapping y 7→ x∗(y),

... via the hierarchy of semidefinite relaxations
of the moment-s.o.s. approach in polynomial optimization.
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The moment-s.o.s. approach

Let Nn
i := {α ∈ Nn :

∑
j αj | ≤ i}.

With a sequence z = (zαβ), indexed in the canonical basis
(xα yβ) of R[x,y], let Lz : R[x,y]→ R be the linear mapping:

f (=
∑
αβ

fαβxαyβ) 7→ Lz(f ) :=
∑
αβ

fαβ zαβ, f ∈ R[x,y].

The moment matrix Mi(z)

associated with a sequence z = (zαβ), has its rows and
columns indexed in the canonical basis (xα yβ), and with
entries.

Mi(z)(α, β), (δ, γ)) = Lz(xαyβ xδyγ) = z(α+δ)(β+γ),

for every α, δ ∈ Nn
i and every β, γ ∈ Np

i
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.
Let q be the polynomial (x,y) 7→ q(x,y) :=

∑
u,v quv xuyv .

The localizing matrix Mi(q, z)

associated with q ∈ R[x,y] and a sequence z = (zαβ), has its
rows and columns indexed in the canonical basis (xα yβ), and
with entries.

Mi(q z)(α, β), (δ, γ)) = Lz(q(x,y)xαyβ xδyγ)

=
∑

u∈Nn,v∈Np

quv z(α+δ+u)(β+γ+v),

for every α, δ ∈ Nn
i and every β, γ ∈ Np

i .
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Let hj ∈ R[x,y] for every j = 1, . . . ,m, and recall that

K := { (x,y) : y ∈ Y ; hj(x,y) ≥ 0, j = 1, . . . ,m }.

The parameter set Y is the basic semi-algebraic set

Y := {y ∈ Rp : hk (y) ≥ 0, k = m + 1, . . . , t}

Let ϕ be a probability measure on Y,
absoliutely continuous with respect to the Lebesgue measure,
and whose moments γ = (γβ) with

γβ =

∫
Y

yβ dϕ(y), ∀β ∈ Np,

are all known.
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Primal semidefinite relaxations:

Let vk := d(deg hk )/2e] for every k = 1, . . . , t and let
i0 := max[d(deg f )/2e,maxk vk ].

For i ≥ i0, consider the semidefinite program:

ρi = inf
z

Lz(f )

s.t. Mi(z) � 0
Mi−vj (hj z) � 0, j = 1, . . . , t
Lz(yβ) = γβ, ∀β ∈ Np

i .

which is a relaxation of P, and

ρi0 ≤ · · · ≤ ρi−1 ≤ ρi ≤ · · · ≤ ρ.
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Dual semidefinite relaxation

The dual reads:

ρ∗i = sup
g,(σi )

∫
Y

g(y) dϕ(y) (=
∑
β

gβ γβ)

s.t. f (x,y)− g(y) = σ0(x,y) +
t∑

j=1

σj(x,y) hj(x,y)

p ∈ R[y]; σj ∈ Σ[x,y], j = 1, . . . , t
deg p ≤ 2i , degσjhj ≤ 2i, j = 1, . . . , t

(Compare with P∗ where f (x,y)− g(y) ≥ 0 for all x ∈ Ky).
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Theorem (Results for the Primal P)
(a) ρi ↑ ρ as i→∞.
(b) Let zi be a nearly optimal solution, e.g. such that
Lzi(f ) ≤ ρi + 1/i. If for ϕ-almost all y ∈ Y, J(y) is attained at a
unique optimal solution x∗(y), then:

lim
i→∞

z i
αβ =

∫
Y

yβ x∗(y)α dϕ(y), ∀α ∈ Nn, β ∈ Np.

In particular, for every k = 1, . . . ,n,

lim
i→∞

z i
e(k)β =

∫
Y

yβ x∗k (y) dϕ(y), ∀β ∈ Np,

where e(k)j = δj=k , j = 1, . . . ,n (with δ· being the Kronecker
symbol).
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Assume x∗k (y) ≥ 0 on Y.

Then for sufficiently large i ,

zi
e(k)β ≈

∫
Y

yβ x∗k (y) dϕ(y), ∀β ∈ Np.

That is, one has a good approximation of all moments of the
measure x∗k (y) dϕ(y) with density x∗k (y) on Y.

Hence one may approximate the optimal k -th coordinate
function y 7→ x∗k (y) by e.g. maximum-entropy estimation
methods.
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Theorem (Results for the dual P∗)
Consider the dual semidefinite relaxations. Then:
(a) ρ∗i ↑ ρ as i→∞.
(b) Let (pi, (σ

i
j )) be a nearly optimal solution e.g.. such that∫

Y
pidϕ ≥ ρ∗i − 1/i. Then pi ≤ J(·) and

lim
i→∞

∫
Y
|J(y)− pi(y)|dϕ(y) = 0

Moreover if one defines

p̃0 := p0, y 7→ p̃i(y) := max [ p̃i−1(y),pi(y) ], i = 1,2, . . . ,

then p̃i → J(·) ϕ-almost uniformly on Y.
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Illustrative Examples

With Y := [0,1], let K := {(x,y) : 1− x1
2 − x2

2 ≥ 0} ⊂ R2, and
f (x,y) := yx1 + (1− y)x2. One easily obtains:

J(y) = −
√

y2 + (1− y)2,

and

x∗1(y) =
−y√

y2 + (1− y)2
; x∗2(y) =

y− 1√
y2 + (1− y)2

.

With 8 moments of the uniform distribution of [0,1], one obtains:
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Figure: J(y)− p4(y) on [0,1]. (Scale is 10−4)
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And the Boltzmann-Shannon maximum-entropy estimation of
x∗(y) with 8 moments gives:
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Figure: max-entropy estimate g1(y) vs −x∗(y) = y/
√

y2 + (1− y)2
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Example 2:

Y = [0,1], f (x,y) := (1− 2y)(x1 + x2), and

K := {(x,y) : yx1
2 + x2

2 − y <= 0; x2
1 + yx2 − y <= 0}.

That is, for each y ∈ Y the set Ky is the intersection of two

ellipsoids. J(y) = −2|1− 2y|
√

y
1+y .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Figure: −p2(y) and −J(y) on [0,1] (4 moments)
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Figure: The curve p2(y)− J(y) on [0,1] (4 moments)
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Example 3:

Consider the following system of 4 quadratic equations in 4
variables and one parameter y ∈ Y = [0,1]:

x1x2 − x1x3 − x4 = y x2x3 − x2x4 − x1 = y
−x1x3 + x3x4 − x2 = y x1x4 − x2x4 − x3 = y,

for which one wishes to compute the minimum norm J(y) of
real solutions as a function of y ∈ Y.

y=0.1 y=0.5 y=1
J(y) 0.0400 1.0000 2.0000
p6(y) 0.0384 0.9264 1.9887
p8(y) 0.0390 0.9395 2.0000

Table: J(y) versus pk (y)
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A "joint+marginal" algorithm for Optimization

Given K ⊂ Rn and f ∈ R[x], consider the polynomial
optimization problem P : min

x
{f (x) : x ∈ K}.

IDEA: Consider x1 as a parameter y in some interval Y ⊂ R
(to be determined, e.g., easily when K is convex), so that:

J(y) = min
x
{ f (x) : x ∈ K; x1 = y}, y ∈ Y.

• Compute a polynomial approximation pk (y) of J(y) via the
k -th semidefinite relaxation of the "joint+marginal" approach.
• Minimize the univariate polynomial pk (y) on Y (easy! reduces
to solving a single semidefinite program), and get z1 ∈ Y.
• In P fix x1 := z1, and repeat for a (n− 1) optimization problem
to obtain x2 = z2, etc. until we get (z1, z2, . . . , zn)
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The rationale behind the "joint+marginal" algorithm:

The larger k , the better the approximation of J(y) by the
univariate polynomial pk (y). And so in minimizing pk (y)
over Y one has a good chance to obtain z1 ≈ x∗1, where x∗

is a global minimizer of P. And so at the end one may
expect z ≈ x∗.
The interest is to precisely have k not too large so as to
handle relatively large size problems, and use the output
point z as the initial point of a local minimization algorithm
to next obtain a local minimizer x̃ ∈ K with reasonable
hope that x̃ is not far away of x∗.
Preliminary results are encouraging!
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THANK YOU !!

Jean B. Lasserre


