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Nonlinear Optimization and Control Applications at OPTEC
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ldea: use nonlinear dynamic simulation models for o ptimization!



Example: Time Optimal Robot Motions

Diederik Verscheure in
front of Leuven's robots

Convex Reformulation
allows computation of
globally optimal paths in
2 milliseconds -

Each model based optimization application needs par ticular tricks...
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Simplified Setting: Root Finding Problem

Aim: solve root finding problem

where F < C'(R™« R")is composed of several nonlinear subfunctions:



Simplified Setting: Root Finding Problem

Aim: solve root finding problem

where F < C'(R™« R")is composed of several nonlinear subfunctions:

Algorithm 1: Function with output of intermediate variables

Input : u e R"

Output: 2y e R™, ..., 2, € R" F € R"
begin

fori=1.2,....mdo

| xr; = ﬁ;('ﬂ-, 1,T9,... .,;1‘-?-__1};
end for

end

|ldea: "Lift" root finding problem into a higher dim ensional space...



Lifted Problem

The equivalent, "lifted" problem is:

with
/ fl(-u.) — r \
fg(ﬂ-‘ 11} — ra
Glu,r) =
an('IL.T.‘-l“ Tm—1) — Tm




Why to lift and increase the system size?

® Lifting is a generalization of the well-known "multiple shooting"
technique for solution of

boundary value problems [Osborne 1969]
parameter estimation problems in ODE [Bock 1987,Schloeder1988]

optimal control problems [Bock and Plitt 1984, Gill et al. 2000,
Schaefer2005]

® Lifting often offers advantages in terms of

sparsity exploitation (not today's focus)

larger region of convergence

more freedom for initialization (e.g. measurements)
faster local contraction rate



Motivating Toy Example

® Original scalar root finding problem:

Flu):=u'*—-2=0

® Lifted formulation yields a nonlinear equation system with 5
equations in 5 variables:

Ty = u’ X9 = ]
. 2

ryg = ﬂ?% Ly .= Ty

F=x4—2

® Compare lifted and unlifted Newton iterates with same initial
guess. Obtain intermediate lifted variables by function evaluation.



Motivating Toy Example

® First iteration is identical, as we Initialized identically
® Lifted Newton method converges in 7 instead of 26 iterations!
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Lifted Problem is much larger ... Is it more expens

In each lifted Newton iteration

eI W A N AzF
uhtl ) Au¥

we have to solve a large linear system:

AN TG . W
( .&ﬂk ) — [a(u‘l‘)(i . u J] CT(,’I_‘. LU J

It is large and structured,..

... but exploitation algorithms are difficult to develop and implement,
cf. Dissertations [Schloeder1988, Schaefer2005] in context of
multiple shooting
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Algorithmic Trick: Preliminaries 1

Original "user function™;

Algorithm 1: Function with output of intermediate variables

Input :ueR"™
Output: x4 e R™ ., ... 2, € R" F ¢ R"
begin

fori=1.2.....mdo

| w = filu,xq, 2o, )

end for

F = fp(u,zy,29,...,2);
end

"Lifted residual” (after minor code additions):

Algorithm 2: Residual function G(u,y)

Input : w,yq,..., U
Output: G4,...,G,,. F
begin
fori=1.,2,....mdo
xr; = ﬁ,;{-u.. 1, Ia,... ,;1‘-1'__1};
Gy = 2 — ys;
Ti = Yi;
end for
F= fF(uaml-xQ-* .- ,.’I.‘-;,n);

end




Algorithmic Trick: Preliminaries 2

Write v+ H(u,z)—=x
(T(u’ i') N ( fp('u,;l‘.) )

with fl('t.-:.)
| falu, 1)
H(u,z) =] .

fm(u*xL c e --Tfm—1)

In each lifted Newton iteration, we have to solve:
| oH oH
H(u,x)—x+ ( 5 (u,x) =10, ) Ar + —(u,z)Au =10
or

o
IfF OfF
ox

[H

fF{'uam)

(u,z)Ax +

(u, x)Au =0

How to solve this linear system efficiently ?



Well-Known Technique: "Condensing"

. oH oH
Tosolve H(u,r)—x+ ( (u,x) =1, ) Ax + }—(u r)Au =10
v
. |
frlu,x) + Jr (u, x)Ax + O (u, x)Au =0
dx ou
o OH -1 |
can eliminate Ar = (m U, T) — nm) (H(u,x) —x)+
oH ::& L oH
— (E(ukmj - ]I.nx) 5 —(u, r) Au
- g
and solve "condensed" system in original
. Au=-—-B"1b
degrees of freedom only: u

and expand solution again: Ar = a + A Au

But how to compute a, b, A, B efficiently ?



Basis of new trick: an auxiliary function

Define Z(u,d)

as implicit function satisfying a perturbed fixed point equation ( by vector d )

H(u,z)—2—d=0

PROPOSITION: if d = H(u,z)—x then

oz oH S OH
I(u d) = (c}r (u,x) —]IM> E(H )

and

o7 0H -
1,
a5 (u,d) = (dl u, ) x)

Partial derivatives of Z deliver part of solution of Newton system ! But how to
obtain Z ?



Obtain Z by another minor code modification

e Can show that Z is obtained by one evaluation of the following
function:

Algorithm 3: Modified function Z(u, d)

Input :wu.dq,....d,,
Output: z,..., 2, F

begin
fori=1,2.....m do
r; = filu,x1, 20, ..., 2_1);
z; = Iy — d?'_;
Li = Zi,
end for
F=frlu,xi,29,...,2,,):

end




Costs of generating and solving linear system

Using Z, can easily compute via directional derivates a, A, b, B as

0z o7z
a — —W(U d) d A= EN (’LL d)
b= fr(u,z)+ %(u?a:)a B = ()Cif (u,x) + %(u xr)A

and then compute the Newton step

Au=—B7 b
Ar =a+ A Au

Computational effort per iteration:
e computing A & B (in one combined forward sweep)

e factoring B
Extra efforts for lifting:

® computing vector a (one extra directional derivative)
® matrix vector product A Au (could also be done w/o evaluating A)
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Two lifted algorithms

® Lifted Gauss-Newton Method

® Lifted SQP Method



Lifted Gauss-Newton

. o
e Original Problem: min || Fy (u)]l3

: : 1 -
® Lifted Problem 11111_1;||fF1('“~-TJ||%

s.t.
fr(u,x) {i} 0
H(u,z)—x = 0

( obtained by lifting F(u) := (Fy(uw)?, Fo(u)))T )



Lifted Gauss-Newton: Quadratic Subproblems

® Linearized lifted problem = structured QP subproblem:

! - 2
) 1 . é{fpl _ Au
a5 | em) + 5 o (37) :
S.1.

Ofp, Au\ (=
UL Up. T )
fFE{uF»} + E'}{"u-‘;l‘-) {uliv.-'-rllv.-} (AI) {2} (:

_ H _ U
H(ug.xp) —xp + - : (Ug, Tk ) (Au) — Ax
d(u, x) :

0




Lifted Gauss-Newton: Quadratic Subproblems

® Linearized lifted problem = structured QP subproblem:

! - 2
) 1 . E:prl _ Au
a5 | em) + 5 o (37) :
S.1.

Ofp, Au\ (=
fFE{uF»} + E'}{"u-‘;l‘-) {uliv.-'-rllv.-} (AI) {2} (:

_ OH _ U
H(up,xp) — xp + ( (Ug, Tk ) (&H) —Axr = 0
d(u, x) ‘-

® Condensed QP (solved by dense QP solver): 1 )
niin 5 |1b1 + By Aul[3

s.t.
by + BsAu { T} 0

easily get b = (b7, 61T and B = (B, BI)T as lifted derivatives of
F(u) = (Fy(u), Fy(u)')T



Lifted SQP Method: Problem Statement

® For notational simplicity, regard first only unconstrained
optimization problem:

min ()
(r!

® Aim: find root of first order necessary conditions for optimality:

F(u) = Vp(u) =0



Lifted Problem

® Lifted problem formulation:

min ﬁ,;('tt-a Wy, W+ s s W)
U,
s.t.
f 1 (HJ — wq
. . f 2 ('U . UM ) — Wy
g('ﬂ-"'u,’) — ' _ [:]
fm ('H._. Uye ooy Wy ) —  w,,

® First order necessary conditions for optimality of lifted problem

ﬁaﬁ(ﬂ-.’w, )\) — Guf%(u! -u;) | Eig(u‘ 't{..?))\ =0
vu!ﬁ('u... w, }k) :vtt_-‘f"-ﬁ'('ug "';:"-"?) + vu-‘g(t‘{‘ :';:""'?))\: []
VaL(u,w,\) = g(u, w) =0

® Lifted Newton = full space SQP method (with exact Hessian) ?



Gradient evaluation via adjoint differentiation

To compute F(u) = Vy,p(u) perform the following code:

wy = fi1(u) (3.8a)
Wy = fg(ﬂ-. -u.-‘l) (ﬂbh)

function Va|ue Wy = m_("u._'u.-‘l._ ein wig Uy — 1]

(

\b Y = ﬁrg (0 20 o v W) (3.8d
Wm = VuwnSe (
Wy—1 = V“,m_lf%ﬁ 4 Vs sFrr@ons (

(L
Wy = vtb‘lf‘-rf F Z v-tulf?'ﬁ“_-’-é. (3*85 }
=2

(s

grad|ent \ = \—uf&’? 5 5 Z Vo fi10;. (3.8h)



Gradient evaluation via adjoint differentiation

To compute F(u) = Vy,p(u) perform the following code:

function value W |= frn(w,wy, ... wy — 1)

Wm—1F \% Wi — 1ft,¢ =+ V W —1J T2 Wy,

T

'{-{_'?1 — vw 1ft,.:' —l_ E vtvlff-"u_-’.-i-
=2

(s



Lifted Newton = Full Space SQP

THEOREM: If we lift F'(u) := V., »(u) with respect to all

intermediate variables: = = (W1, ..., Wy, Wyny - .. ,W1)

then full space SQP and lifted Newton iterations are identical, with A = w

COROLLARY: Same equivalence holds for lifting of constrained problems:

min (u) min folu,w)
i —

subject to subject to

hiu) =0, glu,w) =
fh[-u.1-u3:| =

If we lift Lagrange gradient and constraint:

Lvj " E_::.-rig
h

(need full derivatives only w.r.t. U, not £, due to symmetry of KKT systems)
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Why does lifting often improve convergence speed ?



Simple model problem: chain of scalar functions

® Regard a sequence of scalar functions:
r1 = filu), v = fa(x1),.... ¢ = fr(@pm_1), and fr(z,,) = fy1(Tn)

® after affine transformations, can assume that solution is zero and

filz) = x + bi(x)? + O(|z|*)

® under these circumstances, the non-lifted function is:

F(“‘) — fm—I—l(f?n( fl(u J =u-r ( Z b'-)uz - ()UHF}



Convergence speed of Non-Lifted Newton

® Derivative is given by

m-+1
Fr =102 5 b ot
i=1

® It is easy to show that non-lifted Newton iterations contract like:

m—+1
utl = ( > b-e:) (ul1)2 + O(|ull)?)
i=1

. . . . m+1
i.e. quadratic convergence with contraction constant (ZTT bs)



Lifted Newton Convergence

® Lifted residual is

GlaE) =

/ w + byu? —
11—|—h311 —  I9

Cim—1 22 hm1 -

me—1

2
Ty + bm—i—l 4

o(](2)

THEOREM: Lifted Newton iterations contract in a "staggered" way:

[Fi'.—|—1]

[ u \

Ty

Lm—1

\ &m )

St (ﬂi)z

+ ] 2 a1y 2
brm (;r-?[,f;]_l) + Oma1 (mﬁ[i])

\ b ()

[ by (ul)? 4 o, ( f]l)z\

/

+0 (( U
T

)

(if all b; have the same sign, last variable is "leader" and contracts fastest)



Convergence for motivating toy example

Lifted

error

1 2 3 4 5 6 !
iteration



Practical Conclusions from Theorem

Two cases:

® Same curvature -2 lifted Newton better.
E.g. in toy example, or dynamic simulation codes where several times
e same time stepping function is called
e at similar values

® Opposite curvature = unlifted Newton better.
Example: b, =1 and by = —1 , €.Q. F(u) =w  decomposed as

filu) = %{1 + u)? — % and fo(x) = V1422 —1

After first iteration, unlifted Newton is already converged, lifted not!



Toy Optimal Control Problem for lllustration

min / 2(t)|? + |u(t)|*dt
1()11(

(1) x(t) (z(t) + 1) + u(t)
x(0) = 2

x(3) =0

et <1

[u(t)] < 1. t €10,3]

Mildly nonlinear and unstable system.
Use ODE solver with sensitivities (e.g. in ACADO or MUSCOD-II).
Compare unlifted and lifted Gauss-Newton method.



Unlifted Gauss-Newton

e Choose N = 30 equal control intervals.

e Initialize with steady state controls u(7) = 0.

0.5

ug(t) [-]
Q

-0.5

-1
1




Unlifted: First lteration




Unlifted: Second Iteration
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Unlifted: Third Iteration




Unlifted: 4th lteration
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Unlifted: 5th Iteration
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Unlifted: 6th Iteration
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Unlifted: 7th Iteration (Solution)
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Toy Example: Lifted Initialization
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Lifted: First Iteration
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Lifted: First Iteration
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Lifted: Second lteration
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Lifted: 3 " [|teration (already solution!)
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Large scale Gauss-Newton example 1

® Regard 2-D heat equation with 3 unknown diffusion parameters C

0 ={0,1) = (0,1)

Geu(t, ry,22) — d(xy, v2)Au(t, ry, x2) = 0, (r1,72) € Ot £ [0,1]
d(ry,x2) ={cg + e121 + como
u(t, ry, r2) = 100, (w1.22) € {0} > [0,1],t € [0, 1]
u(t, ry,r9) =10, (21, 29) € O\ ({0} = [0,1]),t € [0, 1]

® Discretize on 9 x 9 grid and perform 200 timesteps
( = 16200 hidden variables )

® Measure state U every 10 time steps ( = 1620 measurements )

® Aim: estimate unknown parameters



Compare three Gauss-Newton variants

® Non-lifted Newton with 3 variables only

® Lifted Newton (with 1620 lifted node variables), initialized like
non-lifted variant via a forward simulation

® Lifted Newton, but all nodes initialized with measurements



Convergence for PDE parameter estimation example 1
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Large Scale Example 2

® Regard 2-D shallow water wave equation (with unknown parameters)

Oyu(t,x,y)
drv(t,z,y)
Oth(t, >, y)

—gd. h(t,x,y) —|fu(t,z,y)
—gdyh(t,z,y) —\u(t,z,y)
—H| [0, u(t.x,y) + Oyv(t.x,y)]

@ Discretize all 3 states U, V, h on 30 x 30 grid and perform 10000
timesteps ( = 27 million variables !)

® Measure only height h every 100 time steps ( = 90 000
measurements)

® Aim: estimate 2 unknown parameters, water depth H and viscous
friction coefficient b



Large Scale Example 2: Measurements




Large Scale Example 2: Measurements




Large Scale Example 2: Measurements




Large Scale Example 2: Measurements




Compare three Gauss-Newton variants for example 2

® Non-lifted Newton with 2 variables only

® Lifted Newton (with 90 00O lifted variables), initialized like non-
lifted variant via a forward simulation

® Lifted Newton, but initialize height with measurements



Performance of 3 variants for different initial gue Sses

b H # iterations Hiterations #iterations
unlifted lifted (autom. init.) | lifted (meas init.)
0.5 | 0.01 5 5 4
5 0.01 6 5 4
15 | 0.01 17 7 6
30 | 0.01 27 7 6
2 | 0.005 31 9 5
2 0.02 38 12 5
2 0.1 44 13 3
0.2 | 0.001 33 12 7
1 | 0.005 AT 10 5
4 0.02 56 10 5
1 0.02 44 9 6
20 | 0.001 24 10 6

true values b = 2 and H = 0.01

CPU time per iteration: 8.9 s for unlifted, 11.8 s for lifted (~1 min total)
(Note: formulation e.g. in AMPL would involve 27 million variables)



® Lifting offers advantages for Newton type optimization:
» faster local convergence rate (= proven in simplified setting)
 more freedom for initialization

® Structure exploiting "Lifted Newton Methods" can easily be generated for
any given user functions and any Newton type method:

« only minor code additions
* nearly no additional costs per iteration
o compatible with SQP, BFGS, Gauss-Newton, ...

e compatible with any linear solver for condensed systems e.g.
GMRES, cf. [Shimizu, Ohtsuka & D. 2009]

® Code and examples available in C++ package LiftOpt [Albersmeyer&D. 2010]
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Open Positions at Optimization in Engineering Cente r OPTEC, Leuven

® OPTEC successfully secured funding until 2017
A g{{* oo /A @ Two open post doc positions in MD's group:

i w ATE il  Embedded Optimization for Control (3 years)
| « Distributed Optimization (2 years)

® One open PhD position:

 Modelling and Optimal Control of Kite Energy
Systems (4 years)




