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Example of CAD-free Optimum-Shape Design in
Aerodynamics

Context

Hierarchical principles

INITTAL SHAPE,
3D GEOMETRY &
FIELD SOLUTION

B-spline-type INITIALIZE
. DESIGN-VECTOR
Deformation Parameters Y =Y e RY

Free-Form Deformation DEFORM SHAPE
(Sederberg, Samareh, ...) £ VOILIAYED €I

PDE SOLVE +
(OPT’L) ADJOINT

OPTIMIZATION

Euler/Navier-Stokes UPDATE Y < Y +5Y

Aerodynamic Coef’s
PERFORMANCE

(lift, drag, moments, ...) : CRITERIA J, Gradient-
© = i)

based,
simplex,
GA, PSO, ...

boundary integrals

—> CPU-DEMANDING FUNCTIONAL
PERFORMANCE EVALUATION

3/90



Outline

© Foreword
Context
Hierarchical principles

@ IX. Multi-Objective Optimization, Concurrent Engineering
Introduction: the classical Pareto front approach and
alternatives
Nash games
A challenging exercise
Hierarchical territory splitting
Applications
Summary and perspectives
An n-discipline optimization strategy
The two-discipline case revisited
General conclusion

4/90



Hierarchical Shape
Optimization

Jean-Antoine Désidéri

Context

Hierarchical principles

pimization strategy

e revisited

Hierarchical principles used in
numerical shape optimization
Hierarchical Physical Models of High and Low Fidelity

e Simplified Physics
e Statistical Models :

— state : Proper Orthogonal Decomposition (POD)
— functional metamodels : surface response, Kriging, ANN, etc

—— ANN used in present applications, but not described here

Hierarchical Geometrical Representations

Multilevel algorithms at the stage of analysis (multigrid) or
optimization (hierarchical smoothing, one-shot, multilevel
parameterization, etc)

—— One slide prepared

Hierarchical Treatment of Multi-Disciplinary Optimization
Cooperation and Competition (Nash Games)
— The focus of this talk
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Basic validation of concept’
Free-Form Deformation

Analysis of algebraic model®

Hierarchical principles
Size experiments in compressible aerodynamics®*
Parameterization self-adaption procedures®
Multilevel shape optimization of antennas®
Stochastic/deterministic Hybridization”

Software: FAMOSA platform + Scilab toolbox

Participation in two European short courses on
optimization (ERCOFTAC, Von Karman Institute)

® |nvited conference at the German Aerospace Lab
(DLR Braunschweig)

® On-going: extension to algebraic hierarchical basis

J. Computational Physics, 2007

Advances in Numerical Mathematics, 2006

B. Abou EI Majd’s Doctoral Thesis, 2007

European J. of Computational Mechanics, 2008

European Series in Applied and Industrial Mathematics, 2007
B. Chaigne’s Doctoral Thesis, 2009

Optimisation Multidisplinaire en Mé: Hermes, 2009

- YR RN R RN

7

stiff + multimodal multilevel + hybrid + parallel
problem algorithm

simplex simplex simplex simplex
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Multi-objective optimization

Examples in aerodynamic design in Aeronautics

o Criteria are usually field functionals, thus costly-to-evaluate

e Multi-criterion (single-flow conditions)
— e.g. lift and moments (stability/maneuverability)

o Multi-point (several flow conditions) e.g.:
— drag reduction at several cruise conditions (towards “robust design”), or

— lift maximization at take-off or landing conditions, drag reduction at cruise

e Multi-discipline (Aerodynamics + others)
— e.g. aerodynamic performance versus criteria related to:
structural design, acoustics, thermal loads, etc

— Special case: ‘preponderant’ or *fragile’ discipline

e Objective: devise cost-efficient algorithms to determine
appropriate trade-offs between concurrent minimization
problems associated with the criteria Ja, Jg, ...
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Notion of
dominance/non-dominance

for minimization problems

Let Y € RV denote the vector of design variables.
If several minimization problems are to be considered concurrently,
a design point Y is said to dominate in efficiency the design point
Y2, symbolically
y' - v2
iff, for all the criteria to be minimized J = Ja, Jg, ...
J(Y") <J(Y?)

and at least one of these inequalities is strict.

Otherwise: non-dominance <= Y' % Y? and Y? £ Y
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Context

GA'’s relying on fitness function related to front index

current ® NPGA : Niched Pareto Genetic Algorithm, Goldberg et al, 1994

» ® NSGA : Nondominated Sorting Genetic Algorithm, Srinivas & Deb, 1994
Introduction: the classical Pareto
front approach and alternatives ® MOGA : Multiobjective Genetic Algorithm, Fonseca et al, 1998
Nash games
Achallenging exarcka ® SPEA : Strength Pareto Evolutionary Algorithm, Zitzler et al, 1999
Hierarchical territory splitting
Applications JB

Summary and perspectives i
An n-discipline optimization strategy
The two-discipline case revisited

General conclusion
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Example of airfoil shape
concurrent optimization

Hierarchical principles

Ja: transonic- cruise pressure drag (minimization);
Jg: subsonic take-off or landing lift (maximization);
Euler equations; Marco et al, INRIA RR 3686 (1999).

Introduction: the classical Pareto

front approach and alternatives T " FINE GRID, - FINE-GRID PARETO SET o
R Y.+ i, COARSEGRDD . COARSE-GRID PARETO SET -
. 05

04
Applications
Summary and perspectives ~ 03 -

0.2 \\

01 -y

”‘Q\ +
. N .
0 om,
01 02 03 04 05

Accumulated populations and Pareto sets
(independent simulations on a coarse and a fine meshes)
https://hal.inria.fr/inria-00072983
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Airfoil shapes of
Pareto-equilibrium front

Non-dominated designs

0.2

subsonic
high-lift

transonic
low-drag
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Numerical efficiency

e Principal merits

e Very rich unbiased information provided to designer
e Very general : applies to non-convex, or discontinuous
Pareto-equilibrium fronts

e Main disadvantages

e Incomplete sorting (decision still to be made)
e \ery costly

13/90



Hierarchical Shape
Optimization

Jean-Antoine Désidéri Alternatlves to Costly
Pareto-front identification
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1. Agglomerated criterion

Minimize agglomerated criterion

Introduction: the classical Pareto
front approach and alternatives

J:()LJA-i-BJB—‘r-...

for some appropriate constants a, f3, ...
and perspectives _ —
e (0]~ [da]™t, [B] ~ [Us] !

wo-discipline case revisited

Unphysical, arbitrary, lacks of generality, ...
Similar alternative :

e First, solve nindependent single-objective minimizations :

J*=mind  forJ=Ja, Jg, ...

e Second, solve the following multi-constrained single-objective
minimization problem :

min T subjectto: Ja < Jp+aT, Jg < Jg+BT, ...
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Alternatives (cont'd)

2. Pointwise determination of Pareto front

Shortcomings:
Js e Functional constraints
e [ogically complex in case of:

® numerous criteria
e discontinuous Pareto front

15/90
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o 3. Multi-level modeling, METAMODELS

Context

Hierarchical principles

ing

T DR e For each discipline A, B, ..., consider a hierarchy of models and
front approach and alternatives . . .

— corresponding criteria based on a METAMODEL (POD, ANN,
A challenging exercise P . . .

R Kriging, surface response, interpolation, ...);

e e Devise a multi-level strategy for multi-objective optimization in
e L e which complexity is gradually introduced.

The two-discipline case revisited

General conclusion

This is the strategy adopted in the « OMD » Network on
Multi-Disciplinary Optimization supported by the French ANR.

See also: web site of Prof. K. Giannakoglou for acceleration

techniques using parallel computing:
http://velos0.ltt. mech.ntua.gr/research/
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4. Game strategies
Context
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IX. Multi-Objective

Optimization, Concurrent
Engineering

Introduction: the classical Pareto
front approach and alternatives
Nash games

A challenging exercise

Hierarchical teritory splitting

Applications . )
e Symmetrical game:
An n-discipline optimization strategy N as h

The two-discipline case revisited

General conclusion °

Unsymmetrical or hierarchical game:
Stackelberg (leader-follower)
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Nash games involving primitive
variables

Prototype example of equilibrium between two criteria

Split the design vector Y into two sub-vectors:
Y =(Ya,Ys)

and use them as the strategies of two independent players A
and B in charge of minimizing the criteria J4 and Jg
respectively.

Seek an equilibrium point Y = (¥4, Y5) such that:
T/A = ArgminyA JA (YA,VB)
and

?B = Argmin Y5 JB (?A, YB)

... many examples in market or social negociations.

19/90
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Possible parallel algorithm
implementation

Often requires under-relaxation to converge

@ Initialize both sub-vectors:

Ya:= v

® Perform in parallel:

e Retrieve and maintain fixed Yg = Yg))
e Update Y, alone //
by Ka design cycles to minimize or

) ; obtain Y/(‘KA) .

v =y

YB = éO)

e Retrieve and maintain fixed Y4 =Y,
e Update Yj alone
by Kg design cycles to minimize or

reduce Jg (Y/§°> s YB) ; obtain
® Update sub-vectors to prepare information exchange

Y = v

and return to step 2 or stop (if convergence achieved).

20/90
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Applications
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Invariance of Nash equilibrium

through arbitrary scaling laws

Let ® and W be smooth, strictly monotone-increasing functions.

The Nash equilibrium point (Y4, Y5) associated with the

formulation:
Y4 = Argminy, ® {JA (YA,VB)]

and - B
Y5 = Argminy, W [JB (Ya, YB)}

does not depend on ¢ or V.

Y =(Ya, Ys),

21/90
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My basic problematics

Given smooth criteria Ja(Y), Jg(Y), ... (Y € RN) and exact or
approximate information on gradients and Hessians, determine an
appropriate split of design variables Y to realize a multi-criterion
optimization via a sensible Nash game.
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Example of equilibrium with
physically-relevant split

From Tang-Désidéri-Périaux, J. Optimization Theory and
Applications (JOTA, Vol. 135, No. 1, October 2007)

Lift-Control (Cy)

in Subsonic conditions

(1st design point)
N

. 2
min Ja= /rc (P—Psub)

Shape parameterization :
Hicks-Henne basis functions

Drag-Control (Cp)
in Transonic conditions
(2nd design point)

min Jp = / (P~ Pirans)’
2 L

Exchange of information every 5 +10 parallel design iterations

23/90
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Convergence of the two criteria
towards the Nash equilibrium

Log(l)

g history of

rmemmres

O
o

== Player2 |
— player1 |

100

200 300 400

500 600 700
Design Cycles
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Shapes and pressure
distribution at 1st design point

Subsonic flow

‘Comparison of pressure distributions: Player1

Comparison of final results: Playerl o

oo,

-0.02

-0.04

-0.06

-0.08}

00 01 02 03 04 05 06 07 08 08 10 01 02z 03 04

08

09
xC

10
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Another type of territory split
for multi-disciplinary optimization; from H.Q.
o Chen-Périaux-Désidéri

Hierarchical principles

Y4 : DRAG (EULER)  Yj:RCS (MAXWELL)
NS

Nash games
A challenging exercise
G erritory splitting
o m-¥

N _m-E
=8 o om-3
5 ggeowO®

Two players A and B, controling Y4 (m) and Y (O) respectively,
optimize their own criterion J4 (e.g. DRAG) or Jg (e.g. RCS), and
exchange information at regular intervals.

Geometrical regularity is maintained.
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Computational efficiency

e Principal merits

e Also fairly general (no penalty constants to choose)
e Applicable to optimization algorithms of all types

(deterministic/evolutionary) and their combinations
e Much more economical

e Shortcomings

o Relation to Pareto-equilibrium front seldomly clear
e Defining territories pertinently raises fundamental
questions
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A difficult two-discipline wing
shape optimization

Jeux dynamiques en optimisation couplée
fluide-structure. In: Abou EI Majd, Doctoral Thesis,
University of Nice-Sophia Antipolis, September 2007.

Y =(YaVYs) RN
Aerodynamics — miny, Ja:

C C
Ja = D +10* max(0,1—L)

Con

e Structural design — miny, Js:

4 S
Js:// |lo.n||dS+ K max | 0,1 — — | + Ko max | 0, — —1
S Va S

A

stress ¢ calculated by EDF code ASTER; Sa and V4 wing
surface and volume after aerodynamic optimization
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A trial splitting strategy using
primitive variables

A total of 12 degrees of freedom (4 x 1 x 1)

Alternating split of root and tip parameters

Structural territory:
4 vertical displacements of mid-control-points of upper and lower surfaces, Ys € R*

Aerodynamic territory: 8 remaining vertical displacements, Y, € R®

A S A
ROOT

TIP

>
o ©
» U J>
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oA

Convergence of the two criteria
(simplex iterations)

Asymptotic Nash equilibrium

PRESSURE DRAG (Ja)

JeudeNash

STRESS INTEGRAL (Js)

JeudeNash

Param &1k

Param Bt

o 00

oo im0 2

toratons

200 w00 00

o

0 ) 1000 1500

200
Horatens.

Very antagonistic coupling
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Aerodynamic optimum shape
and shape resulting from
inappropriate Nash equilibrium

Aerodynamics optimized alone

Unacceptable coupling
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Recommended Eigensplitting

Split of Territories in Concurrent Optimization, J.A.D.,
INRIA Research Report 6108, 2007;
https://hal.inria.fr/inria-00127194

(1) First Phase : optimize primary discipline (A) alone

min Ja(Y)
YERN

subject to K equality constraints:

a(¥)=(91,2, -, 9x) =0

Get :

@ Single-discipline optimal design vector : Y,
@® Hessian matrix (primary discipline) : H} = Ha(Y2)
@® Active constraint gradients : Vg; = Vgi(Y2) (k=1,2,...,K)
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Eigensplitting - cont'd
(2) Construct orthogonal basis in preparation of split

© Transform {Vg;} into {0} (k = 1,2, ..., K) by Gram-Schmidt
orthogonalization process, and form the projection matrix :

p=i-[o") [01)' - [0?] [o?]' =~ [0"] [0"]’

® Restrict Hessian matrix to subspace tangent to constraint

surfaces :

©® Diagonnalize matrix H,
H), = QDiag(H,) Q'
using an appropriate ordering of the eigendirections :
By =hy=..=He=0; b,y > h o> ... > hy

Tail column-vectors of matrix Q correspond to directions of least
sensitivity of primary criterion J subject to constraints.
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Eigensplitting - end
(3) Organize the Nash game in the eigenvector-basis {2

Consider the splitting of parameters defined by:

uq Vp
. u . .
y=vi+Q( , ), U= : v=| )

UN-—p 4]

Let € be a small positive parameter (0 < € < 1), and let Y, denote the Nash equilibrium point
associated with the concurrent optimization problem:

min  Ja

min_ Jag
UeRN-P

and VeRp @)

Subject to: g =0 Subject to: no constraints

in which again the constraint g = 0 is not considered when K = 0, and

Ja Jg Ja
Japi=—+€e(0——— 3
S (Jg Jz) @
where 0 is a strictly-positive relaxation parameter (6 < 1: under-relaxation; 6 > 1:

over-relaxation).
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Theorem; setting 1.

Split of Territories in Concurrent Optimization, J.A.D.,
INRIA Research Report 6108, 2007;
https://hal.inria.fr/inria-00127194

Let N, p and K be positive integers such that:
1<p<N, 0<K<N-p (4)

Let Ja, Jg and, if K > 1, { gk } (1 < k < K) be K + 2 smooth real-valued functions of the vector
Y € RN. Assume that J4 and Jp are positive, and consider the following primary optimization
problem,

min Ja(Y) (5)

yeRN

that is either unconstrained (K = 0), or subject to the following K equality constraints:

a(Y)=(01.92, -, 0x)" =0 6)

Assume that the above minimization problem admits a local or global solution at a point Y; € RV
at which J; = Ja(Y,) > 0 and J5 = Jg(Y,) > 0, and let H}; denote the Hessian matrix of the
criterion Jy at Y = Y.

If K=0, let P=Iand H, = Hj; otherwise, assume that the constraint gradients, { Vgj }

(1 < k < K), are linearly independent.
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Theorem; setting 2.

Apply the Gram-Schmidt orthogonalization process to the constraint gradients, and let { ©* }
(1 < k < K) be the resulting orthonormal vectors. Let P be the matrix associated with the
projection operator onto the K-dimensional subspace tangent to the hyper-surfaces gx = 0
(1<k<K)atY=Yj,

- = [0 [0’ @)

Consider the following real-symmetric matrix:

Hy=PH,P ®)

Let © be an orthogonal matrix whose column-vectors are normalized eigenvectors of the matrix
H,, organized in such a way that the first K are precisely {(n" } (1 < k < K), and the subsequent
N — K are arranged by decreasing order of the eigenvalue

he = 0" Hyo* = 0" . Hjo" (K+1<k<N) 9)
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General conclusion

Theorem; setting 3.

Consider the splitting of parameters defined by:

Y:Y;+Q( L‘;),U: : v=| (10)
UN—p 171

Let € be a small positive parameter (0 < € < 1), and let Y, denote the Nash equilibrium point
associated with the concurrent optimization problem:

min  Jy

N min JAB
UeR

and VeRP (11)

Subject to: g =0 Subject to: no constraints

in which again the constraint g = 0 is not considered when K = 0, and

J, Ji J,
Japi= T te (02 A (12)
Ja Jg Ja

where 0 is a strictly-positive relaxation parameter (6 < 1: under-relaxation; 6 > 1:

over-relaxation).
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General conclusion

Then:
® [Optimality of orthogonal decomposition] If the matrix H, is positive semi-definite, which is

Theorem; conclusions 1.

the case in particular if the primary problem is unconstrained (K = 0), or if it is subject to
linear equality constraints, its eigenvalues have the following structure:

H=t=.=

=0 My Zhp>..>hHy>0

and the tail associated eigenvectors { @ } (K +1 < k < N) have the following variational
characterization:

o = Argmin,, |0.H;0| st o] =1ando L {o' o’ .., o}
o' =Argmin, [0.Hjo| st o|=1ando L {0’ o’ .. o "}
o' =Amgmin, 0. Hjo| st lo|=1ando Ll {o' o .. o " 0"}

(14)
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General conclusion

Theorem; conclusions 2
(cont'd).

[Preservation of optimum point as a Nash equilibrium] For € = 0, a Nash equilibrium point

exists and it is:
Yo=Y, (15)

[Robustness of original design] If the Nash equilibrium point exists for € > 0 and
sufficiently small, and if it depends smoothly on this parameter, the functions:

ja(€) =Jda(Ye), Jas(e) = Jag (Ve) (16)
are such that:
jx(0)=0 7)
jae(0)=6-1<0 (18)
and
Jja(€) = Ji + O(e?) (19)
jag(€) =1+ (6—1)e+ O(e?) (20)
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Nash games

A challenging exercise ® |n case of linear equality constraints, the Nash equilibrium point satisfies identically:
Hierarchical territory splitting

Applications.

ST R u(e)=0 (1<k<K) (21)
An n-discipline optimization strategy

N—p
The two-discipline case revisited

_ P
Ve=VYit+ Y u(e)o'+Y v(e)o" (22)
General conclusion k=K+1 Jj=1

® For K =1and p= N—1, the Nash equilibrium point Y¢ is Pareto optimal.
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General conclusion

e Optimality of initial point (Y}):

= VJ; € Sp(o', @, ..., o) (Gram-Schmidt)

e Fore=0:

Proof; (1)

K
VJZ—i—Z MVgi=0, g=0

k=1

J J
Ja=dJ, Jdag= J—:‘ =const. xJ, Vdag= J—’: =const. x VJ

A

A
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General conclusion

Proof; (2)

e Optimality of sub-vector U w.r.t. criterion J4 = J for fixed V and
under equality constraints:

oJ oY K . (oY
(au)v—”(ﬂf}%““”k'(w)v
K ag*
~E(5)

K
:><a> J+Y Mgk | =0andg=0
/)y k=0
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General conclusion

e Optimality of sub-vector V w.r.t. criterion Jag ~ J for fixed U:

provided K < N—p+1.
(initial Nash equilibrium point)

:>Y;:VO

Y:ﬁ+Q(

Proof; (3)

— Continuum of equilibrium points parameterized by ¢ [J
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General conclusion

Proof; (4)

Case of linear equality constraints

e Linearly-independent constraint gradient vectors { Lx = Vg }
(1 < k < K) (otherwise reduce K):

ngLk.Y—kaLk.(Y—YZ)ZO (1 SKSK)

e Continuum of Nash equilibrium points parameterized by €:

YS—YA—I—ZU] (x)’—f—Zv/ Nt
j= j=
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General conclusion

Proof; (5)

Case of linear equality constraints (end)

e By orthogonality of the eigenvectors, and since

Ly =Vg; € Sp(',...,0f), the equality constraints,

N-p R .
<L Y uyle)+ ) v(e) o' >=0 (1<k<K)
j=1 j=1
simplify to:
K .
<Lk, ) yle)w >=0 (1<k<K)
j=1

and this is an invertible homogeneous linear system of K
equations for the K unknowns { u;(e) } (1 <j < K).

= ui(e) =w(e)=...=uk(e) =0, Ye— Ys L Vs, ju(0)=0 O
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General conclusion

Proof; (6)

Case of nonlinear equality constraints

e Define neighboring Nash equilibrium point associated with
. . oL .
linearized constraints, Y, for which:

Ja (Vé) = J;+ O(¢?)
e Define projections:

Ye—Ye=Vv+w

where v € Sp(Ly, Lo, ..., Lx ) and w € Sp( Ly, Lo, ..., LK)L.
e Assume local regularity and smoothness of the hyper-surfaces
gk = 0:
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General conclusion

Case of nonlinear equality constraints (end)

= (7§ +O(e?) since VJ;.v = 0and VJ5. w = O(e?)

=J;4 O(?) and j4(0) = 0 again.

—  Concerning the primary criterion Ja, the initial design

is robust w.r.t. small perturbations in €

Proof; (7)

=Ja 7@) +VJ;.(v+w)+O(e?) provided VJj is smooth

a

50/90



Proof; (8) (end)

e |astly, the secondary criterion satisfies:
; ja(€) js(€)  ja(e)
€)= el 0o -
jag(0)=0+1x(6—-1)+0=0—-1<0 [J
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Example

Variables:

= (}’o,}’h}’z,}’a) eRr*

Primary problem: Secondary problem:
Sy

min Ja(Y) = kzb 2 min Jg (Y Z Vi

Subjectto: g=0 Subject to: no constraints

A: antagonism parameter (A > 1)
9="Yi0 (yk—A ) oryiy3y2y3 —96v/3 =0
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Case of a nonlinear constraint :
a=yiyiy3ys—96v3=0

Continuation method (A=3, 8 = 1)

OPTIMAL SPLIT FOR THETA = 1.0

o 02

04 8 06 08 1

The continuum of Nash equilibriums as € varies

NOTE: the function jg(€) = Je SYE) is not monotone ! (¢* ~ 0.487)

54/90



Hierarchical Shape
Optimization

Jean-Antoine Désidéri

Aerodynamic & structural
pa concurrent optimization exercise

Hierarchical principles

ST From B. Abou EI Majd’s Doctoral Thesis
Optimization, Concurrent

Engineering

e First strategy: split of primitive variables

Nash games .

(after many unsuccessful trials)

Hierarchical territory splitting

Applications

Summary and perspectives

premmmamanes A total of 8 degrees of freedom (3 x 1 x 1)

The two-discipline case revisited

General conclusion

Structural S S
criterion Js:
root, Ys € R*

Al Ai Aerodynamic
=) criterion Jj:
A A tip, YaeR?
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Aerodynamic metamodel vs
structural model

Split of primitive variables - convergence of the two criteria

COUPLAGE AERO. VS COQUES MINCES: JEU DE NASH

ISIIA
N
5
8
T

Joueur A ——
Joueur S v

e

200

300

400
ITERATIONS

500

600

700 800

e Nash equilibrium not completely reached (yet)

e But acceptable improved solution attained
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Aerodynamic metamodel vs
structural model

Split of primitive variables - evolution of cross sections

Black: Initicil Y
Red :Final S

-~

e Structural parameters Ys enlarge and round
out root; shape altered in shock region

e Aerodynamic parameters Y, attempt to
compensate in the critical tip region
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Aerodynamic metamodel vs
structural model

Projected-Hessian-based Eigensplit - convergence of the

two criteria

COUPLAGE AERO. VS COQUES MINCES: JEU DE NASH

Joueur A ——
Joueur § e
3 1
2 ]
098 | 1
096 | 1
094 | 1
092 . . . . . . .
) 50 100 150 200 250 300 350 400

ITERATIONS

e More stable Nash equilibrium reached

e Aero. criterion: < 3% degradation; Structural: ~ 7% gain
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Projected-Hessian-based Eigensplit - evolution of cross

X. Multi-Objective .
sections

Optimization, Concurrent
Engineering

Introduction: the classical Pareto
front approach and alternatives

Nash games Black: Initial
A challenging exercise Red : Final

Hierarchical teritory splitting
Applications

Summary and perspectives
An n-discipline optimization strategy
The two-discipline case revisited
General conclusion
Sensitive
Shock

Region

e Smoother, and smaller deviation

e Meta-model-based split able to identify
structural parameters preserving the
geometry spanwise in the shock region !!!
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Eulerian aerodynamic model vs
structural model

Split of primitive variables - convergence of the two criteria

J_SIJ_S*ET J_AIJ_A*

NASH GAME COUPLING THE EULER EQUATIONS WITH A THIN-SHELL MODEL

CRITERION JJA ——
CRITERION J_S ==

50 100 150

ITERATIONS

300 350

400

60/90



Hierarchical Shape
Optimization

Jean-Antoine Désidéri

Context

Hierarchical principles

Introduction: t
front appr

ical Pareto

Nash games

A challenging exercise
Hierarchical teritory splitting
Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

a

Eulerian aerodynamic model vs
structural model

Split of primitive variables - evolution of cross sections

) Root

7540000 754000000 75326606403

e
G858

#8884,

b) Mid-span

2 socton: 377000004031 5400000+00 75324800103]

c) Tip

ONLY MINUTE SHAPE VARIATIONS PERMITTED BY
CONSTRAINTS — poor performance of optimization
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Eulerian aerodynamic model vs

structural model

Projected-Hessian-based Eigensplit - convergence of the

J_SII_S*ET J_AIJ_A*

two criteria

NASH GAME COUPLING THE EULER EQUATIONS WITH A THIN-SHELL MODEL

11 T T T T T
CRITERION J_/
CRITERION J_S
1.05 H 4
1 4
095 [ 4
09 L L L L L L
0 50 100 150 200 250 300 350

ITERATIONS
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Projected-Hessian-based Eigensplit - evolution of cross
sections

a) Root b) Mid-span c) Tip

2 secion: 75400000400 1540000000 75324800403

A SUBSPACE RESPECTING CONSTRAINTS HAS BEEN FOUND
IN WHICH OPTIMIZATION CAN PERFORM
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Mach number surface
distributions

Original aerodynamic absolute optimum vs recommended
Nash eanilibrium solution

118
.u_m Original aerodynamic

.0.525 absolute optimum
0.200

Aero-structural
Nash equilibrium solution
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Hierarchical principles

e An abstract split of territories is recommended for cases in
which the design must remain sub-optimal w.r.t. a given
primary, i.e. preponderant or fragile functional. The split is
defined through an eigenproblem involving the Hessian matrix
and the constraint gradient vectors. These quantities may be
approximated through meta-models.

e A continuum of Nash equilibriums originating from the point Y,
of optimality of the primary functional alone (subject to
constraints), can be identified through a perturbation
formulation. The property of preservation of the initial optimum
(Yo = Y), is more trivially satisfied for unconstrained
problems (VJ; = 0).
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e Robustness: along the continuum, small deviations away from
the initial point Yo = Y3 induce second-order variations in the

Introduction: the classical Pareto
front approach and alternatives

Nash games

AT primary functional: Ja (Ye) = Jj + O (€2); Ja is insensitive’ to
Hierarchical territory splitting
AT small €.

Summary and perspectives

An n-discipline optimization strategy

A T — e Aerodynamic-Structural coupled shape optimization exercise:

General conclusion

o the ANN-based automatic eigen-splitting was found able to
recognize that the structural parameters should not alter the
shock region;

e as aresult, a gain of about 8 % in the structural criterion has
been achieved, at the expense of only a 3 % degradation in the
aerodynamic criterion.
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wo-discipline case revisited

Initial setting

Initial design vector :

Y% € # (usually H =RN; N> n)
Smooth criteria :

Ji(Y) (1<i<n)atleast C?)

Available gradients : u? = VJ?
Hessian matrices : H?, and their norms, e.g. :

[ =y irace [ (H0)?]

Superscript ? indicates an evaluation at Y = Y?°
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J; is replaced by:

: 1 o (L7=1E
Fn=e s =) e (M

1
o(x)=0if x <0, and xexp <_x2) if x>0 (of class C*)

1H]

vl R

~1

Scaling : o;

Br = B(Y°, R) : working ball

Behavior at oo : J:, — 00 as || Y|| — oe.
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TH

revisited

Properties of transformed

Forall j :

criteria

e Jyand J; have same regularity.

e J; is dimensionless and strictly positive, it varies as J; itself in
=B(Y°R);

the working ball Bg

e For appropriate o; and v: HVJ, H ~1

o J (YO) =1andlimy o Ji =os;

DOUBLE SUPERSCRIPT *

IMPLICIT FROM HERE ON
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Extend notion of stationarity

Lemma : Let Y° be a Pareto-optimal point of the smooth criteria
Ji(Y) (1 <i< n<N), and define the gradient-vectors

u? = VJ; (Y?) in which V denotes the gradient operator. There
exists a convex combination of the gradient-vectors that is equal to
zero:

-

n
Y osul=0, a;>0(Vi), o=1.

1

Proposed definition :[Pareto-stationarity]

The smooth criteria J;i(Y) (1 < i< n < N) are [here] said to be
Pareto-stationary at the design-point Y? iff there exists a convex
combination of the gradient-vectors, uf = VJ;(Y?), that is equal to
zero.
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Foreword

Context

Hierarchical principles

X. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pareto
front approach and alternatives

e At Pareto-optimal design-points, we cannot improve all criteria
Hierarchical territory splitting S| mu |taneously
Applications

summary and prspocives ... BUT AT ALL OTHER DESIGN-POINTS ... YES, WE CAN !’

An n-discipline optimization strategy

e In an optimization iteration, Nash equilibrium design-points should
only be sought after completion of a cooperative-optimization phase
during which all criteria improve.

"Obama, 2009
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TH

se revisited

Descent direction common to n
disciplines (1)

Lemma :

Let {u;} (i=1,2,...,n) be a family of n vectors in a Hilbert space H
of dimension at least equal to n. Let U be the set of the strict convex
combinations of these vectors:

n n
UZ{WEH/W:ZOC,‘U,';(X,'>O,VI'; OL,':1}
i=1 i=1

I

and U its closure, the convex hull of the family. Let ® be the unique
element of U of minimal norm. Then :

Vue U, (0,0) > o] = Cy >0
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Descent direction common to n
disciplines (2
Proof of Lemma :
Existence and uniqueness of the minimal-norm element ® € U :

U'is closed and convex, || || is continuous, and bounded from below.
Let u € U (arbitrary) and r = & — ®. Since U is convex :

vee[0,1], o+ere U
Since ® is the minimal-norm element € U :
|+ er|)? —|lo||® = (o+er, 0+er) — (o, ) = 2¢(w, r)+€3(r,r) >0
and this implies that (@, r) > 0; in other words :

VieU, (0,i—®) >0

where equality stands whenever ® is the orthogonal projection of 0
onto U. Efc.

a

75/90



Hierarchical Shape
Optimization

Jean-Antoine Désidéri Descent dlrectlon common to n
s disciplines (3)
Theorem :

Let H be a Hilbert space of finite or infinite dimension N. Let Ji( Y)
(1 <i < n< N)be nsmooth functions of the vector Y € #, and Y0
a particular admissible design-point, at which the gradient-vectors
are denoted u? = VJ,(Y?), and

An n-discipline optimization strategy
Tr

revisited

u_{wey{/w Zoc,,,oc,>0 (Vi); Zoc,_1} (23)

Let  be the minimal-norm element of the convex hull U, closure of
U. Then :
@ either ® =0, and the criteria J;(Y) (1 < i< n) are
Pareto-stationary at Y = Y?;
® or ® # 0 and —w is a descent direction common to all the
criteria; additionally, if ® € U, the inner product (&, ®) is equal
to the positive constant C, = ||0||? for all & € U.
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The two-discipline case revisited

Descent direction common to n

disciplines ()
Proof of Theorem :

The first part of the conclusion is a direct application of the Lemma.

Directional derivatives : {(u;,®)} (i=1,2,...,n).
Assume that ® € U and not simply U.
Define j(u) = [lulf = (u

min j(u ZOLUHZ%—1

since none of the constraints o; > 0 is saturated. The Lagrangian,

h:j+k(i (x,71>
i=1

is stationary w.r.t the vector o0 € ]Rﬁ and the real variable A :

Vi: ﬁ =0, et % =0
T oo, 0 oA
Therefore, for any index i :
g
A=0
oa; +
But, j(u) = (u,u) and for u = o = ¥, ou;, we have:
I _ 2( ou u) = 2(u;,w) = —A = (u;,®) = —A/2 (a constant)
a(xl - a(xl il - 1y - 1y - -
By linearity, this extends to any convex combination of the {u;}(i—1......n)- O

u). Then, @ is the solution to the following minimization problem :
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Genera

“Cooperative-Optimization” :
Multiple-Gradient Descent
Algorithm (MGDA)

From a non-stationary design-point Y°, construct a
sequence {Y'} (i=0,1,2...):
Compute foralli (1 <i<n):
W =vS
and apply the theorem to define @P. If ®° # 0, consider:
Ji() =di(YP—ta®) (1<i<n)

and identify h° > 0, the largest real number for which these

functions of t are strictly-monotone decreasing over [0, #°]. Let:

vl — y0 _ 400

so that:
Ji (Y1) < Ji (Y?)

and so on.
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Either: the construction stops after a finite number of steps, at a
ST P-stationary design-point Y”; then possibly proceed with the
o i “competitive-optimization” phase;

or: the sequence {Y'} is infinite.
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(Y} (i=0,1,2...)

Hierarchical principles

Then:

e The corresponding sequence of criterion {J;}, for any given i,
R is strictly monotone-decreasing, and positive, thus bounded.

An n-discipline optimization strategy

e st « Since the criterion J;(Y) is o at oo, the sequence { Y’} is itself
bounded. (H is assumed reflexive.)

TH

e There exists a weakly convergent subsequence; let Y* be the
limit.
We conjecture that Y* is P-stationary.
(Otherwise, restart with YO = Y*))
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Summary : practical
implementation

One is led to solve the following quadratic-form minimization in R" :

min ||(D||
aceR”?

subject to the following constraints/notations :
n
®= Zoc,u,, u=VJ (Y%, o >0 (Vi) Z

Then, we recommend :
o if ® £ 0, fo use — as a descent direction;
e otherwise (Pareto-stationarity), to analyze local Hessians,
and :
o if all positive-definite (Pareto-optimality): stop;
e otherwise : stop anyway (if design satisfactory), or
elaborate a sensible Nash game from Y°
in the eigenvector basis of Z Ly 0 H0
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Cooperative phase

Let:
u=u; =V (YO), V:U2:VJ2(YO),OC1 =0Q,0=1—0
Then :
. Vi(v—u) V][ =v.u
= 2 = IR 2
lu=v[® flul® + v —2u.v
— min(jull, v

0<a" <1< (u,v)>cos”

)
()

83/90



Hierarchical Shape
Optimization

Jean-Antoine Désidéri

Context

Hierarchical principles

Summary and perspectives

An n-discipline optimization strategy
The two-discipline case revisited
General conclusion

Competitive phase

What to do if the initial design-point Y° is
Pareto-stationary w.r.t. (Ja, Jg)?

Let us examine first the convex case:

e Stationary point of type | : VJ9 =VJ2 =0
Simultaneous minimum of J,4 and Jg: STOP

e Stationary point of type Il : e.g. VJ3=0and VJ3 #0
Ja minimum, Jg reducible: STOP, or
NASH equilibrium with hierarchical split of variables

e Stationary point of type Ill : VJ3 +AVJS =0 (A > 0)
Pareto-optimality: STOP
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P-Stationary design-point of type | : VJ§ = VJ3 =0

Context

Hierarchical principles

HS, HS: Hessian matrices of Ja, Jg at Y = Y°

e If H3 > 0and H3 > 0: CONVEX CASE: STOP
An n-discipline optimization strategy .

S e HS > 0and Hj has some <0 eigenvalues

Ja minimum, Jp is reducible:

STOP, or NASH equilibrium with the hierarchical split of
territory based on the eigenstructure of the Hessian matrix Hﬁ.
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General conclusion

Non-convex case (2)
P-Stationary design-point of type | : VJ§ = VJ3 =0

e If both Hessian matrices have some <0 eigenvalues, define
families of linearly independent eigenvectors:
Fa={u, tz, ..., Up} Fe={wv1, va, ..., g}

o If FaU Fgis linearly dependent, Y7, ot uj — Y74 Bjv; =0
Then, a common descent direction is —w"

P
W' = Z, ZB/V/

e Otherwise, SpFaN SpFg = {0}: STOP, OR determine the
NASH equilibrium point using %4 (resp. ¥g) as the strategy of A
(resp. B).
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Non-convex case 3)

P-Stationary design-point of type Il : VU3 = 0 and
VJE#0

e HY>o0:
Case already studied: NASH equilibrium in the hierarchical
basis of eigenvectors of HS.
e HY has some <0 eigenvalues associated with the eigenvectors:
_{]:A:{U1, u, ..., up}
o if VJg is not 1 Sp¥a: a descent direction common to J4 and Jp
exists in SpF4: use it to reduce both criteria.

e otherwise, VJg 1 SpFa: we propose to identify the NASH
equilibrium using same split as above.



Hierarchical Shape

Optimization
Jean-Antoine Désidéri NO n-CO nVeX Case (4)
P-Stationary design-point of type Ill :
Context
Hierarchical principles VJ,?\ + }\,VJS =0 (7\, > 0)
front appr Let
0 0
vy VB VR
- ol — 0
I

Summary and perspectives

An n-discipline optimization strategy Consider possib]e move in hyperp|ane J_ uas.

The two-discipline case revisited

For this, consider reduced Hessian matrices:

Hllqo = Pag Hg Pas H/BO = Pas Hg Pas
where: Pag = | — [uag] [uas]" .

Analysis in orthogonal hyperplane is that of a stationary point of
type a and dimension N — 1.
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Conclusion

Recommended strategy for multidisciplinary optimization

Design of Experiment
Select an appropriate set of initial designs

For each initial design :

Perform a “COOPERATIVE-OPTIMIZATION’ phase :
at each iteration, all criteria improve
Stop, or enter a “COMPETITIVE-OPTIMIZATION” phase :

e perform an eigen-analysis of local systems,

o define an appropriate split of variables, and

o establish the corresponding Nash equilibrium between
disciplines by SMOOTH CONTINUATION

Multi-criterion Aer ic Shape-Design O
Tang, J.-A. Désidéri and J. Périaux, Journal of Optimization Theory and Applications (JOTA), 135-1, 2007.

Split of Territories in Concurrent Optimization, J.-A. Désidéri, INRIA Research Report 6108, October 2007.
(http://hal.inria.fr/inria-00193944/fr/)

Multiple-Gradient Descent Algorithm (MGDA), J.-A. Désidéri, INRIA Research Report 6953, June 2009.
(http//hal.inria.fr/inria-00389811/fr/)

and Inverse Problems Using Control Theory and Nash Games, Z.
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