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PDE-Constrained Optimization
Example of CAD-free Optimum-Shape Design in

Aerodynamics

INITIAL SHAPE,
3D GEOMETRY &
FIELD SOLUTION

INITIALIZE
DESIGN-VECTOR

Y = Y 0 ∈ RN

DEFORM SHAPE
& VOLUME GRID

PDE SOLVE +
(OPT’L) ADJOINT

PERFORMANCE
CRITERIA Ji

(i = 1, ..., n)

OPTIMIZATION
UPDATE Y ← Y +δY

CV TEST
no

yes

B-spline-type
Deformation Parameters

Free-Form Deformation
(Sederberg, Samareh, ...)

Euler/Navier-Stokes

Aerodynamic Coef’s
(lift, drag, moments, ...) :

boundary integrals

=⇒ CPU-DEMANDING FUNCTIONAL
PERFORMANCE EVALUATION

Gradient-
based,
simplex,
GA, PSO, ...

3 / 90



Hierarchical Shape
Optimization

Jean-Antoine Désidéri

Foreword

Context

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pareto
front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Outline

1 Foreword
Context
Hierarchical principles

2 IX. Multi-Objective Optimization, Concurrent Engineering
Introduction: the classical Pareto front approach and
alternatives
Nash games
A challenging exercise
Hierarchical territory splitting
Applications
Summary and perspectives
An n-discipline optimization strategy
The two-discipline case revisited
General conclusion

4 / 90



Hierarchical Shape
Optimization

Jean-Antoine Désidéri

Foreword

Context

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pareto
front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Hierarchical principles used in
numerical shape optimization

Hierarchical Physical Models of High and Low Fidelity

• Simplified Physics

• Statistical Models :
– state : Proper Orthogonal Decomposition (POD)
– functional metamodels : surface response, Kriging, ANN, etc

−→ ANN used in present applications, but not described here

Hierarchical Geometrical Representations
Multilevel algorithms at the stage of analysis (multigrid) or
optimization (hierarchical smoothing, one-shot, multilevel
parameterization, etc)
−→ One slide prepared

Hierarchical Treatment of Multi-Disciplinary Optimization
Cooperation and Competition (Nash Games)
−→ The focus of this talk
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Multilevel shape optimization
• Basic validation of concept1

• Analysis of algebraic model2

• Size experiments in compressible aerodynamics3,4

• Parameterization self-adaption procedures5

• Multilevel shape optimization of antennas6

• Stochastic/deterministic Hybridization7

• Software: FAMOSA platform + Scilab toolbox

• Participation in two European short courses on
optimization (ERCOFTAC, Von Karman Institute)

• Invited conference at the German Aerospace Lab
(DLR Braunschweig)

• On-going: extension to algebraic hierarchical basis
1 J. Computational Physics, 2007
2 Advances in Numerical Mathematics, 2006
3 B. Abou El Majd’s Doctoral Thesis, 2007
4 European J. of Computational Mechanics, 2008
5 European Series in Applied and Industrial Mathematics, 2007
6 B. Chaigne’s Doctoral Thesis, 2009
7 Optimisation Multidisplinaire en Mécanique, Hermès, 2009

stiff + multimodal
problem =⇒ multilevel + hybrid + parallel

algorithm

fine

medium

coarse

PSO

simplex simplex

PSO

PSO

simplex simplex

Free-Form Deformation
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Multi-objective optimization
Examples in aerodynamic design in Aeronautics

•• Criteria are usually field functionals, thus costly-to-evaluate

• Multi-criterion (single-flow conditions)
– e.g. lift and moments (stability/maneuverability)

• Multi-point (several flow conditions) e.g.:
– drag reduction at several cruise conditions (towards “robust design”), or

– lift maximization at take-off or landing conditions, drag reduction at cruise

• Multi-discipline (Aerodynamics + others)
– e.g. aerodynamic performance versus criteria related to:
structural design, acoustics, thermal loads, etc

– Special case: ’preponderant’ or ’fragile’ discipline

• Objective: devise cost-efficient algorithms to determine
appropriate trade-offs between concurrent minimization
problems associated with the criteria JA, JB , ...
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Notion of
dominance/non-dominance

for minimization problems

Let Y ∈ RN denote the vector of design variables.
If several minimization problems are to be considered concurrently,
a design point Y 1 is said to dominate in efficiency the design point
Y 2, symbolically

Y 1 � Y 2

iff, for all the criteria to be minimized J = JA, JB , ...

J
(
Y 1)≤ J

(
Y 2)

and at least one of these inequalities is strict.

Otherwise: non-dominance⇐⇒ Y 1 � Y 2 and Y 2 � Y 1

9 / 90



Hierarchical Shape
Optimization

Jean-Antoine Désidéri

Foreword

Context

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pareto
front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Pareto fronts

GA’s relying on fitness function related to front index
• NPGA : Niched Pareto Genetic Algorithm, Goldberg et al, 1994

• NSGA : Nondominated Sorting Genetic Algorithm, Srinivas & Deb, 1994

• MOGA : Multiobjective Genetic Algorithm, Fonseca et al, 1998

• SPEA : Strength Pareto Evolutionary Algorithm, Zitzler et al, 1999

JB

JA
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Example of airfoil shape
concurrent optimization

JA: transonic- cruise pressure drag (minimization);
JB : subsonic take-off or landing lift (maximization);

Euler equations; Marco et al, INRIA RR 3686 (1999).

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

J2

J1

FINE GRID
COARSE GRID

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

J2

J1

FINE-GRID PARETO SET
COARSE-GRID PARETO SET

Accumulated populations and Pareto sets
(independent simulations on a coarse and a fine meshes)

https://hal.inria.fr/inria-00072983
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Airfoil shapes of
Pareto-equilibrium front

Non-dominated designs

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5

subsonic
high-lift

transonic
low-drag
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Numerical efficiency

• Principal merits

• Very rich unbiased information provided to designer
• Very general : applies to non-convex, or discontinuous

Pareto-equilibrium fronts

• Main disadvantages

• Incomplete sorting (decision still to be made)
• Very costly
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Alternatives to costly
Pareto-front identification

1. Agglomerated criterion

Minimize agglomerated criterion

J = αJA + βJB + ...

for some appropriate constants α, β, ...
[α]∼ [JA]−1 , [β]∼ [JB]−1

Unphysical, arbitrary, lacks of generality, ...

Similar alternative :
• First, solve n independent single-objective minimizations :

J∗ = minJ for J = JA, JB , ...

• Second, solve the following multi-constrained single-objective
minimization problem :

min T subject to : JA ≤ J∗A +αT , JB ≤ J∗B +βT , ...

14 / 90
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Alternatives (cont’d)
2. Pointwise determination of Pareto front

{
min JA

s.t. JB = βj
βj

{
min JB

s.t. JA = αi

αi
JA

JB

Shortcomings:

• Functional constraints
• Logically complex in case of:

• numerous criteria
• discontinuous Pareto front
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Alternatives (cont’d)
3. Multi-level modeling, METAMODELS

• For each discipline A,B, ..., consider a hierarchy of models and
corresponding criteria based on a METAMODEL (POD, ANN,
Kriging, surface response, interpolation, ...);

• Devise a multi-level strategy for multi-objective optimization in
which complexity is gradually introduced.

This is the strategy adopted in the « OMD » Network on
Multi-Disciplinary Optimization supported by the French ANR.

See also: web site of Prof. K. Giannakoglou for acceleration
techniques using parallel computing:
http://velos0.ltt.mech.ntua.gr/research/
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Alternatives (end)
4. Game strategies

• Symmetrical game:
Nash

• Unsymmetrical or hierarchical game:
Stackelberg (leader-follower)
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Nash games involving primitive
variables

Prototype example of equilibrium between two criteria

• Split the design vector Y into two sub-vectors:

Y = (YA,YB)

and use them as the strategies of two independent players A
and B in charge of minimizing the criteria JA and JB

respectively.

• Seek an equilibrium point Y =
(

Y A,Y B
)

such that:

Y A = ArgminYA
JA
(
YA,Y B

)
and

Y B = ArgminYB
JB
(

Y A,YB
)

... many examples in market or social negociations.
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Possible parallel algorithm
implementation

Often requires under-relaxation to converge

1 Initialize both sub-vectors:

YA := Y (0)
A YB := Y (0)

B

2 Perform in parallel:
• Retrieve and maintain fixed YB = Y (0)

B
• Update YA alone
by KA design cycles to minimize or

reduce JA

(
YA,Y (0)

B

)
; obtain Y

(KA)
A .

//
• Retrieve and maintain fixed YA = Y (0)

A
• Update YB alone
by KB design cycles to minimize or

reduce JB

(
Y (0)

A ,YB

)
; obtain Y

(KB )
B .

3 Update sub-vectors to prepare information exchange

Y (0)
A := Y (KA)

A Y (0)
B := Y (KB)

B

and return to step 2 or stop (if convergence achieved).
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Invariance of Nash equilibrium
through arbitrary scaling laws

Let Φ and Ψ be smooth, strictly monotone-increasing functions.

The Nash equilibrium point
(
Y A,Y B

)
associated with the

formulation:
Y A = ArgminYA

Φ
[
JA
(
YA,Y B

)]
and

Y B = ArgminYB
Ψ
[
JB
(
Y A,YB

)]
does not depend on Φ or Ψ.

The split of territories, Y = (YA,YB), is therefore the
sole critical element in a Nash game.
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My basic problematics

Given smooth criteria JA(Y ), JB(Y ), ... (Y ∈ RN ) and exact or
approximate information on gradients and Hessians, determine an
appropriate split of design variables Y to realize a multi-criterion
optimization via a sensible Nash game.
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Example of equilibrium with
physically-relevant split

From Tang-Désidéri-Périaux, J. Optimization Theory and
Applications (JOTA, Vol. 135, No. 1, October 2007)

Shape parameterization :
Hicks-Henne basis functions

Lift-Control (CL)
in Subsonic conditions

(1st design point)
↘

Drag-Control (CD)
in Transonic conditions

(2nd design point)
↙

min
Γ1

JA =
Z

Γc

(p−psub)2 min
Γ2

JB =
Z

Γc

(p−ptrans)2

Exchange of information every 5 +10 parallel design iterations
23 / 90
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Convergence of the two criteria
towards the Nash equilibrium
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Shapes and pressure
distribution at 1st design point

Subsonic flow
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C

Initial
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Designed
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−0.7
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Comparison of pressure distributions: Player1

x/C

−p
/p

∞ Initial
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Shapes and pressure
distribution at 2nd design point

Transonic flow

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.1

−0.05

0

0.05

Comparison of final results: Player2
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Comparison of pressure distributions: Player2
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−p
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∞
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Another type of territory split
for multi-disciplinary optimization; from H.Q.

Chen-Périaux-Désidéri
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’fort.33’ u 1:2

YA : DRAG (EULER)
↘

YB :RCS (MAXWELL)
↙

Two players A and B, controling YA (�) and YB (�) respectively,
optimize their own criterion JA (e.g. DRAG) or JB (e.g. RCS), and

exchange information at regular intervals.

Geometrical regularity is maintained.
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Computational efficiency

• Principal merits

• Also fairly general (no penalty constants to choose)
• Applicable to optimization algorithms of all types

(deterministic/evolutionary) and their combinations
• Much more economical

• Shortcomings

• Relation to Pareto-equilibrium front seldomly clear
• Defining territories pertinently raises fundamental

questions
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A difficult two-discipline wing
shape optimization

Jeux dynamiques en optimisation couplée
fluide-structure. In: Abou El Majd, Doctoral Thesis,

University of Nice-Sophia Antipolis, September 2007.

Y = (YA,YS) ∈ RN

• Aerodynamics – minYA JA:

JA =
CD

CD0

+ 104 max

(
0,1− CL

CL0

)

• Structural design – minYS JS :

JS =
ZZ

S
‖σ.n‖dS +K1 max

(
0,1− V

VA

)
+K2 max

(
0,

S
SA
−1

)
stress σ calculated by EDF code ASTER; SA and VA wing
surface and volume after aerodynamic optimization
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A trial splitting strategy using
primitive variables

A total of 12 degrees of freedom (4×1×1)

Alternating split of root and tip parameters
Structural territory:
4 vertical displacements of mid-control-points of upper and lower surfaces, YS ∈ R4

Aerodynamic territory: 8 remaining vertical displacements, YA ∈ R8

ROOT

A AS

A AS

TIP

A AS

A AS
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Convergence of the two criteria
(simplex iterations)

Asymptotic Nash equilibrium

PRESSURE DRAG (JA) STRESS INTEGRAL (JS)

Very antagonistic coupling
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Aerodynamic optimum shape
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Aerodynamics optimized alone Unacceptable coupling
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Recommended Eigensplitting
Split of Territories in Concurrent Optimization, J.A.D.,

INRIA Research Report 6108, 2007;
https://hal.inria.fr/inria-00127194

(1) First Phase : optimize primary discipline (A) alone

min
Y∈RN

JA(Y )

subject to K equality constraints:

g(Y ) = (g1, g2, ..., gK )T = 0

Get :

1 Single-discipline optimal design vector : Y ∗A
2 Hessian matrix (primary discipline) : H∗A = HA(Y ∗A)

3 Active constraint gradients : ∇g∗k = ∇gk (Y ∗A) (k = 1,2, ...,K )
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Eigensplitting - cont’d
(2) Construct orthogonal basis in preparation of split

1 Transform {∇g∗k} into {ωk} (k = 1,2, ...,K ) by Gram-Schmidt
orthogonalization process, and form the projection matrix :

P = I− [ω1] [
ω

1]t − [ω2] [
ω

2]t −·· ·− [ωK ] [
ω

K ]t
2 Restrict Hessian matrix to subspace tangent to constraint

surfaces :
H ′A = P H∗A P

3 Diagonnalize matrix H ′A,

H ′A = ΩDiag(h′k )Ωt

using an appropriate ordering of the eigendirections :

h′1 = h′2 = ... = h′K = 0 ; h′K +1 ≥ h′K +2 ≥ ...≥ h′N

Tail column-vectors of matrix Ω correspond to directions of least
sensitivity of primary criterion JA subject to constraints.
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Eigensplitting - end

(3) Organize the Nash game in the eigenvector-basis Ω

Consider the splitting of parameters defined by:

Y = Y ∗A + Ω

(
U
V

)
, U =


u1

.

.

.
uN−p

, V =


vp

.

.

.
v1

 (1)

Let ε be a small positive parameter (0≤ ε≤ 1), and let Y ε denote the Nash equilibrium point
associated with the concurrent optimization problem: min

U∈RN−p
JA

Subject to: g = 0
and

 min
V∈Rp

JAB

Subject to: no constraints
(2)

in which again the constraint g = 0 is not considered when K = 0, and

JAB :=
JA

J∗A
+ ε

(
θ

JB

J∗B
− JA

J∗A

)
(3)

where θ is a strictly-positive relaxation parameter (θ < 1: under-relaxation; θ > 1:

over-relaxation).
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Theorem; setting 1.
Split of Territories in Concurrent Optimization, J.A.D.,

INRIA Research Report 6108, 2007;
https://hal.inria.fr/inria-00127194

Let N, p and K be positive integers such that:

1≤ p < N , 0≤ K < N−p (4)

Let JA, JB and, if K ≥ 1, {gk } (1≤ k ≤ K ) be K + 2 smooth real-valued functions of the vector
Y ∈ RN . Assume that JA and JB are positive, and consider the following primary optimization
problem,

min
Y∈RN

JA(Y ) (5)

that is either unconstrained (K = 0), or subject to the following K equality constraints:

g(Y ) = (g1, g2, ..., gK )T = 0 (6)

Assume that the above minimization problem admits a local or global solution at a point Y ∗A ∈ RN

at which J∗A = JA (Y ∗A ) > 0 and J∗B = JB (Y ∗A ) > 0, and let H∗A denote the Hessian matrix of the
criterion JA at Y = Y ∗A .

If K = 0, let P = I and H ′A = H∗A; otherwise, assume that the constraint gradients, {∇g∗k }
(1≤ k ≤ K ), are linearly independent.
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Theorem; setting 2.

Apply the Gram-Schmidt orthogonalization process to the constraint gradients, and let {ωk }
(1≤ k ≤ K ) be the resulting orthonormal vectors. Let P be the matrix associated with the
projection operator onto the K -dimensional subspace tangent to the hyper-surfaces gk = 0
(1≤ k ≤ K ) at Y = Y ∗A ,

P = I− [ω1] [
ω

1]t − [ω2] [
ω

2]t −·· ·− [ωK ] [
ω

K ]t (7)

Consider the following real-symmetric matrix:

H ′A = P H∗A P (8)

Let Ω be an orthogonal matrix whose column-vectors are normalized eigenvectors of the matrix
H ′A organized in such a way that the first K are precisely {ωk } (1≤ k ≤ K ), and the subsequent
N−K are arranged by decreasing order of the eigenvalue

h′k = ω
k .H ′A ω

k = ω
k .H∗A ω

k (K + 1≤ k ≤ N) (9)
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Theorem; setting 3.

Consider the splitting of parameters defined by:

Y = Y ∗A + Ω

(
U
V

)
, U =


u1

.

.

.
uN−p

, V =


vp

.

.

.
v1

 (10)

Let ε be a small positive parameter (0≤ ε≤ 1), and let Y ε denote the Nash equilibrium point
associated with the concurrent optimization problem: min

U∈RN−p
JA

Subject to: g = 0
and

 min
V∈Rp

JAB

Subject to: no constraints
(11)

in which again the constraint g = 0 is not considered when K = 0, and

JAB :=
JA

J∗A
+ ε

(
θ

JB

J∗B
− JA

J∗A

)
(12)

where θ is a strictly-positive relaxation parameter (θ < 1: under-relaxation; θ > 1:

over-relaxation).
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Then:

• [Optimality of orthogonal decomposition] If the matrix H ′A is positive semi-definite, which is
the case in particular if the primary problem is unconstrained (K = 0), or if it is subject to
linear equality constraints, its eigenvalues have the following structure:

h′1 = h′2 = ... = h′K = 0 h′K +1 ≥ h′K +2 ≥ ...≥ h′N ≥ 0 (13)

and the tail associated eigenvectors {ωk } (K + 1≤ k ≤ N) have the following variational
characterization:

ω
N = Argminω |ω .H∗A ω| s.t. ‖ω‖= 1 and ω⊥ {ω

1, ω
2, ..., ω

K}
ω

N−1 = Argminω |ω .H∗A ω| s.t. ‖ω‖= 1 and ω⊥ {ω
1, ω

2, ..., ω
K , ω

N}
ω

N−2 =
.
.
.

Argminω |ω .H∗A ω| s.t. ‖ω‖= 1 and ω⊥ {ω
1, ω

2, ..., ω
K , ω

N , ω
N−1}

(14)
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Theorem; conclusions 2
(cont’d).

• [Preservation of optimum point as a Nash equilibrium] For ε = 0, a Nash equilibrium point
exists and it is:

Y 0 = Y ∗A (15)

• [Robustness of original design] If the Nash equilibrium point exists for ε > 0 and
sufficiently small, and if it depends smoothly on this parameter, the functions:

jA(ε) = JA
(
Y ε

)
, jAB(ε) = JAB

(
Y ε

)
(16)

are such that:

j ′A(0) = 0 (17)

j ′AB(0) = θ−1≤ 0 (18)

and

jA(ε) = J∗A + O(ε
2) (19)

jAB(ε) = 1 + (θ−1)ε + O(ε
2) (20)
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Theorem; conclusions 3 (end).

• In case of linear equality constraints, the Nash equilibrium point satisfies identically:

uk (ε) = 0 (1≤ k ≤ K ) (21)

Y ε = Y ∗A +
N−p

∑
k=K +1

uk (ε)ω
k +

p

∑
j=1

vj (ε)ω
N+1−j (22)

• For K = 1 and p = N−1, the Nash equilibrium point Y ε is Pareto optimal.

43 / 90



Hierarchical Shape
Optimization

Jean-Antoine Désidéri

Foreword

Context

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pareto
front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Proof; (1)

• Optimality of initial point (Y ∗A ):

∇J∗A +
K

∑
k=1

λk ∇g∗k = 0 , g = 0

=⇒ ∇J∗A ∈ Sp
(
ω

1 , ω
2 , ..., ω

K ) (Gram-Schmidt)

• For ε = 0:

JA = J , JAB =
JA

J∗A
= const.× J , ∇JAB =

JA

J∗A
= const.×∇J

44 / 90



Hierarchical Shape
Optimization

Jean-Antoine Désidéri

Foreword

Context

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pareto
front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Proof; (2)

• Optimality of sub-vector U w.r.t. criterion JA = J for fixed V and
under equality constraints:

(
∂J
∂U

)
V

= ∇J .

(
∂Y
∂U

)
V

=−
K

∑
k=0

λk ∇g∗k .

(
∂Y
∂U

)
V

=−
K

∑
k=0

λk

(
∂g∗k
∂U

)
V

=⇒
(

∂

∂U

)
V

(
J +

K

∑
k=0

λk gk

)
= 0 and g = 0
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Proof; (3)

• Optimality of sub-vector V w.r.t. criterion JAB ∼ J for fixed U:

Y = Y ∗A + Ω

(
U
V

)
(

∂J
∂V

)
U

= ∇J .

(
∂Y
∂V

)
U

= ∇J . Ω

(
0 0
0 Ip

)
︸ ︷︷ ︸= 0

∈ Sp
(
ω

N−p+1, ...,ωN)
provided K < N−p + 1.
=⇒ Y ∗A = Y 0 (initial Nash equilibrium point)

=⇒ Continuum of equilibrium points parameterized by ε
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Proof; (4)
Case of linear equality constraints

• Linearly-independent constraint gradient vectors {Lk = ∇g∗k }
(1≤ k ≤ K ) (otherwise reduce K ):

gk = Lk .Y −bk = Lk . (Y −Y ∗A)= 0 (1≤ k ≤ K )

• Continuum of Nash equilibrium points parameterized by ε:

Y ε = Y ∗A +
N−p

∑
j=1

uj (ε)ω
j +

p

∑
j=1

vj (ε)ω
N+1−j
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Proof; (5)
Case of linear equality constraints (end)

• By orthogonality of the eigenvectors, and since
Lk = ∇g∗k ∈ Sp

(
ω1, ...,ωK

)
, the equality constraints,

< Lk ,
N−p

∑
j=1

uj (ε)ω
j +

p

∑
j=1

vj (ε)ω
N+1−j >= 0 (1≤ k ≤ K )

simplify to:

< Lk ,
K

∑
j=1

uj (ε)ω
j >= 0 (1≤ k ≤ K )

and this is an invertible homogeneous linear system of K
equations for the K unknowns {uj (ε)} (1≤ j ≤ K ).

=⇒ u1(ε) = u2(ε) = ... = uK (ε) = 0 , Y ε−Y ∗A ⊥ ∇J∗A , j ′A(0) = 0
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Proof; (6)
Case of nonlinear equality constraints

• Define neighboring Nash equilibrium point associated with
linearized constraints, Y L

ε , for which:

JA

(
Y L

ε

)
= J∗A + O(ε

2)

• Define projections:

Y ε−Y L
ε = v + w

where v ∈ Sp (L1, L2, ..., LK ) and w ∈ Sp (L1, L2, ..., LK )⊥.

• Assume local regularity and smoothness of the hyper-surfaces
gk = 0:

v = O(ε) , w = O(ε
2)
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Proof; (7)
Case of nonlinear equality constraints (end)

• Then:
jA(ε) = JA

(
Y ε

)
= JA

(
Y L

ε + v +w
)

= JA

(
Y L

ε

)
+∇JA

(
Y L

ε

)
.(v +w)+O(ε

2)

= JA

(
Y L

ε

)
+∇J∗A .(v +w)+O(ε

2) provided ∇J∗A is smooth

= JA

(
Y L

ε

)
+O(ε

2) since ∇J∗A .v = 0 and ∇J∗A .w = O(ε
2)

= J∗A +O(ε
2) and j ′A(0) = 0 again.

=⇒ Concerning the primary criterion JA, the initial design
is robust w.r.t. small perturbations in ε

50 / 90



Hierarchical Shape
Optimization

Jean-Antoine Désidéri

Foreword

Context

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pareto
front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Proof; (8) (end)

• Lastly, the secondary criterion satisfies:

jAB(ε) =
jA(ε)

J∗A
+ ε

(
θ

jB(ε)

J∗B
− jA(ε)

J∗A

)
j ′AB(0) = 0 + 1× (θ−1) + 0 = θ−1≤ 0
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Example

Variables:

Y =
(

y0,y1,y2,y3

)
∈ R4

Primary problem:

min JA (Y ) =
3

∑
k=0

y2
k

Ak

Subject to: g = 0

Secondary problem:

min JB (Y ) =
3

∑
k=0

y2
k

Subject to: no constraints

A: antagonism parameter (A≥ 1)

g = ∑
3
k=0

(
yk −Ak

)
, or y4

0 y3
1 y2

2 y3−96
√

3 = 0
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Case of a nonlinear constraint :
g = y4

0 y3
1 y2

2 y3−96
√

3 = 0

Continuation method (A = 3, θ = 1)

 3

 2

 0
 0  0.2  0.4  0.6  0.8  1

OPTIMAL SPLIT FOR THETA = 1.0

J_A / J_A*
J_AB

J_B / J_B*

JA/J∗A

JB/J∗B

JAB•1 -1• (ε = 1)

• (ε = 1)

ε
The continuum of Nash equilibriums as ε varies

NOTE: the function jB(ε) = JB(Y ε)
J∗B

is not monotone ! (ε∗ ∼ 0.487)
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Aerodynamic & structural
concurrent optimization exercise

From B. Abou El Majd’s Doctoral Thesis

First strategy: split of primitive variables
(after many unsuccessful trials)

A total of 8 degrees of freedom (3×1×1)

Structural
criterion JS:
root, YS ∈ R4

S S

S S

Aerodynamic
criterion JA:
tip, YA ∈ R4

A A

A A
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Aerodynamic metamodel vs
structural model

Split of primitive variables - convergence of the two criteria

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0  100  200  300  400  500  600  700  800

J_
S

 / 
J_

A

ITERATIONS

COUPLAGE AERO. VS COQUES MINCES: JEU DE NASH

Joueur A
Joueur S

• Nash equilibrium not completely reached (yet)

• But acceptable improved solution attained
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Aerodynamic metamodel vs
structural model

Split of primitive variables - evolution of cross sections

YA

YS

• Structural parameters YS enlarge and round
out root; shape altered in shock region

• Aerodynamic parameters YA attempt to
compensate in the critical tip region
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Sensitive
Shock
Region

• Smoother, and smaller deviation

• Meta-model-based split able to identify
structural parameters preserving the
geometry spanwise in the shock region !!!
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ONLY MINUTE SHAPE VARIATIONS PERMITTED BY
CONSTRAINTS =⇒ poor performance of optimization
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A SUBSPACE RESPECTING CONSTRAINTS HAS BEEN FOUND
IN WHICH OPTIMIZATION CAN PERFORM
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Mach number surface
distributions
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Nash equilibrium solution
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absolute optimum

Aero-structural
Nash equilibrium solution
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General conclusion

Summary (1)

• An abstract split of territories is recommended for cases in
which the design must remain sub-optimal w.r.t. a given
primary, i.e. preponderant or fragile functional. The split is
defined through an eigenproblem involving the Hessian matrix
and the constraint gradient vectors. These quantities may be
approximated through meta-models.

• A continuum of Nash equilibriums originating from the point Y ∗A
of optimality of the primary functional alone (subject to
constraints), can be identified through a perturbation
formulation. The property of preservation of the initial optimum
(Y 0 = Y ∗A ), is more trivially satisfied for unconstrained
problems (∇J∗A = 0).
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Summary (end)

• Robustness: along the continuum, small deviations away from
the initial point Y 0 = Y ∗A induce second-order variations in the
primary functional: JA

(
Y ε

)
= J∗A + O

(
ε2
)
; JA is ’insensitive’ to

small ε.

• Aerodynamic-Structural coupled shape optimization exercise:
• the ANN-based automatic eigen-splitting was found able to

recognize that the structural parameters should not alter the
shock region;

• as a result, a gain of about 8 % in the structural criterion has
been achieved, at the expense of only a 3 % degradation in the
aerodynamic criterion.
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Initial setting

Initial design vector :

Y 0 ∈H (usually H = RN ; N ≥ n)

Smooth criteria :

Ji (Y ) (1≤ i ≤ n) (at least C2)

Available gradients : u0
i = ∇J0

i
Hessian matrices : H0

i , and their norms, e.g. :∥∥H0
i

∥∥=

√
trace

[(
H0

i

)2
]

Superscript 0 indicates an evaluation at Y = Y 0
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Preliminary transformation of
criteria

Ji is replaced by:

˜̃Ji (Y ) = exp

(
αi

∥∥H0
i

∥∥∥∥∇J0
i

∥∥2

(
Ji − J0

i

))
+ ε0 φ

(∥∥Y −Y 0
∥∥2

R2 −1

)

φ(x) = 0 if x ≤ 0 , and x exp

(
− 1

x2

)
if x > 0 (of class C∞)

Scaling : αi
‖H0

i ‖
‖∇J0

i ‖ = γ

R ∼ 1

BR = B
(
Y 0,R

)
: working ball

Behavior at ∞ : ˜̃Ji → ∞ as ‖Y‖→ ∞.
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Properties of transformed
criteria

For all i :

• Ji and ˜̃Ji have same regularity.

• ˜̃Ji is dimensionless and strictly positive, it varies as Ji itself in
the working ball BR = B

(
Y 0,R

)
;

• For appropriate αi and γ:
∥∥∥∇

˜̃Ji
0
∥∥∥∼ 1

• ˜̃Ji
(
Y 0
)

= 1 and lim‖Y‖→∞
˜̃Ji = ∞;

DOUBLE SUPERSCRIPT ˜̃ IMPLICIT FROM HERE ON
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Extend notion of stationarity

Lemma : Let Y 0 be a Pareto-optimal point of the smooth criteria
Ji (Y ) (1≤ i ≤ n ≤ N), and define the gradient-vectors
u0

i = ∇Ji
(
Y 0
)

in which ∇ denotes the gradient operator. There
exists a convex combination of the gradient-vectors that is equal to
zero:

n

∑
i=1

αi u0
i = 0 , αi ≥ 0 (∀i) ,

n

∑
i=1

αi = 1 .

Proposed definition :[Pareto-stationarity]
The smooth criteria Ji (Y ) (1≤ i ≤ n ≤ N) are [here] said to be
Pareto-stationary at the design-point Y 0 iff there exists a convex
combination of the gradient-vectors, u0

i = ∇Ji (Y 0), that is equal to
zero.
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Postulate of evidence

At Pareto-optimal design-points, we cannot improve all criteria
simultaneously
... BUT AT ALL OTHER DESIGN-POINTS ... YES, WE CAN !1

In an optimization iteration, Nash equilibrium design-points should
only be sought after completion of a cooperative-optimization phase
during which all criteria improve.

1Obama, 2009
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Descent direction common to n
disciplines (1)

Lemma :

Let {ui} (i = 1,2, ...,n) be a family of n vectors in a Hilbert space H
of dimension at least equal to n. Let U be the set of the strict convex
combinations of these vectors:

U =

{
w ∈ H / w =

n

∑
i=1

αiui ; αi > 0 , ∀i ;
n

∑
i=1

αi = 1

}

and U its closure, the convex hull of the family. Let ω be the unique
element of U of minimal norm. Then :

∀ū ∈ U , (ω, ū)≥ ‖ω‖2 := Cω ≥ 0
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Descent direction common to n
disciplines (2)

Proof of Lemma :

Existence and uniqueness of the minimal-norm element ω ∈ U :
U is closed and convex, ‖ ‖ is continuous, and bounded from below.
Let ū ∈ U (arbitrary) and r = ū−ω. Since U is convex :

∀ε ∈ [0,1] , ω + εr ∈ U

Since ω is the minimal-norm element ∈ U :

‖ω + εr‖2−‖ω‖2 = (ω+εr ,ω+εr)−(ω,ω) = 2ε(ω, r)+ε
2(r , r)≥ 0

and this implies that (ω, r)≥ 0; in other words :

∀ū ∈ U , (ω, ū−ω)≥ 0

where equality stands whenever ω is the orthogonal projection of 0
onto U. Etc.
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Descent direction common to n
disciplines (3)

Theorem :

Let H be a Hilbert space of finite or infinite dimension N. Let Ji (Y )
(1≤ i ≤ n ≤ N) be n smooth functions of the vector Y ∈H , and Y 0

a particular admissible design-point, at which the gradient-vectors
are denoted u0

i = ∇Ji (Y 0), and

U =

{
w ∈H / w =

n

∑
i=1

αi u0
i ; αi > 0 (∀i) ;

n

∑
i=1

αi = 1

}
(23)

Let ω be the minimal-norm element of the convex hull U, closure of
U. Then :

1 either ω = 0, and the criteria Ji (Y ) (1≤ i ≤ n) are
Pareto-stationary at Y = Y 0;

2 or ω 6= 0 and −ω is a descent direction common to all the
criteria; additionally, if ω ∈U, the inner product (ū,ω) is equal
to the positive constant Cω = ‖ω‖2 for all ū ∈ U.

76 / 90



Hierarchical Shape
Optimization

Jean-Antoine Désidéri

Foreword

Context

Hierarchical principles

IX. Multi-Objective
Optimization, Concurrent
Engineering

Introduction: the classical Pareto
front approach and alternatives

Nash games

A challenging exercise

Hierarchical territory splitting

Applications

Summary and perspectives

An n-discipline optimization strategy

The two-discipline case revisited

General conclusion

Descent direction common to n
disciplines (4)

Proof of Theorem :
The first part of the conclusion is a direct application of the Lemma.

Directional derivatives : {(ui ,ω)} (i = 1,2, ...,n).
Assume that ω ∈ U and not simply U.
Define j(u) = ‖u‖2 = (u,u). Then, ω is the solution to the following minimization problem :

min
α

j(u) , u =
n

∑
i=1

αi ui ,
n

∑
i=1

αi = 1

since none of the constraints αi ≥ 0 is saturated. The Lagrangian,

h = j + λ

(
n

∑
i=1

αi −1

)
is stationary w.r.t the vector α ∈ RN

+ and the real variable λ :

∀i :
∂h
∂αi

= 0 , et
∂h
∂λ

= 0

Therefore, for any index i :
∂j

∂αi
+ λ = 0

But, j(u) = (u,u) and for u = ω = ∑
n
i=1 αi ui , we have:

∂j
∂αi

= 2(
∂u
∂αi

,u) = 2(ui ,ω) =−λ =⇒ (ui ,ω) =−λ/2 (a constant).

By linearity, this extends to any convex combination of the {ui}(i=1,2,...,n).
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“Cooperative-Optimization” :
Multiple-Gradient Descent

Algorithm (MGDA)
From a non-stationary design-point Y 0, construct a

sequence {Y i} (i = 0,1,2...):
Compute for all i (1≤ i ≤ n) :

u0
i = ∇J0

i

and apply the theorem to define ω0. If ω0 6= 0, consider:

ji (t) = Ji (Y 0− tω0) (1≤ i ≤ n)

and identify h0 > 0, the largest real number for which these
functions of t are strictly-monotone decreasing over [0,h0]. Let:

Y 1 = Y 0−h0
ω

0

so that:
Ji
(
Y 1)< Ji

(
Y 0)

and so on.
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Two possible situations

Either: the construction stops after a finite number of steps, at a
P-stationary design-point Y r ; then possibly proceed with the
“competitive-optimization” phase;

or: the sequence {Y i} is infinite.
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General conclusion

Case of an infinite sequence
{Y i} (i = 0,1,2...)

Then:

• The corresponding sequence of criterion {Ji}, for any given i ,
is strictly monotone-decreasing, and positive, thus bounded.

• Since the criterion Ji (Y ) is ∞ at ∞, the sequence {Y i} is itself
bounded. (H is assumed reflexive.)

• There exists a weakly convergent subsequence; let Y ∗ be the
limit.

We conjecture that Y ∗ is P-stationary.
(Otherwise, restart with Y 0 = Y ∗.)
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Summary : practical
implementation

One is led to solve the following quadratic-form minimization in Rn :

min
α∈Rn

‖ω‖2

subject to the following constraints/notations :

ω =
n

∑
i=1

αi ui , ui = ∇Ji
(
Y 0) , αi ≥ 0 (∀i) ,

n

∑
i=1

αi = 1

Then, we recommend :

• if ω 6= 0, to use −ω as a descent direction;
• otherwise (Pareto-stationarity), to analyze local Hessians,

and :
• if all positive-definite (Pareto-optimality): stop;
• otherwise : stop anyway (if design satisfactory), or

elaborate a sensible Nash game from Y 0

in the eigenvector basis of ∑
n
i=1 αi H0

i .
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Cooperative phase

Let:
u = u1 = ∇J1

(
Y 0
)
, v = u2 = ∇J2

(
Y 0
)
, α1 = α, α2 = 1−α.

Then :

α
∗ =

v .(v−u)

‖u− v‖2 =
‖v‖2− v .u

‖u‖2 +‖v‖2−2u.v

0 < α
∗ < 1⇐⇒ (̂u,v) > cos−1

min
(
‖u‖ ,‖v‖

)
max

(
‖u‖ ,‖v‖

)
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Competitive phase
What to do if the initial design-point Y 0 is

Pareto-stationary w.r.t. (JA , JB)?

Let us examine first the convex case:

• Stationary point of type I : ∇J0
A = ∇J0

B = 0
Simultaneous minimum of JA and JB : STOP

• Stationary point of type II : e.g. ∇J0
A = 0 and ∇J0

B 6= 0
JA minimum, JB reducible: STOP, or
NASH equilibrium with hierarchical split of variables

• Stationary point of type III : ∇J0
A + λ∇J0

B = 0 (λ > 0)
Pareto-optimality: STOP
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Non-convex case (1)

P-Stationary design-point of type I : ∇J0
A = ∇J0

B = 0

H0
A, H0

B : Hessian matrices of JA, JB at Y = Y 0

• If H0
A > 0 and H0

B > 0: CONVEX CASE: STOP

• H0
A > 0 and H0

B has some <0 eigenvalues
JA minimum, JB is reducible:
STOP, or NASH equilibrium with the hierarchical split of
territory based on the eigenstructure of the Hessian matrix H0

A.
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Non-convex case (2)

P-Stationary design-point of type I : ∇J0
A = ∇J0

B = 0

• If both Hessian matrices have some <0 eigenvalues, define
families of linearly independent eigenvectors:

FA = {u1 , u2 , ... , up } FB = {v1 , v2 , ... , vq }

• If FA∪FB is linearly dependent, ∑
p
i=1 αi ui −∑

q
j=1 βj vj = 0

Then, a common descent direction is −w r :

w r =
p

∑
i=1

αi ui =
q

∑
j=1

βj vj

• Otherwise, SpFA∩SpFB = {0}: STOP, OR determine the
NASH equilibrium point using FA (resp. FB) as the strategy of A
(resp. B).
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Non-convex case (3)

P-Stationary design-point of type II : ∇J0
A = 0 and

∇J0
B 6= 0

• H0
A > 0:

Case already studied: NASH equilibrium in the hierarchical
basis of eigenvectors of H0

A.

• H0
A has some <0 eigenvalues associated with the eigenvectors:

FA = {u1 , u2 , ... , up }
• if ∇J0

B is not ⊥ SpFA: a descent direction common to JA and JB
exists in SpFA: use it to reduce both criteria.

• otherwise, ∇J0
B ⊥ SpFA: we propose to identify the NASH

equilibrium using same split as above.
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Non-convex case (4)
P-Stationary design-point of type III :

∇J0
A + λ∇J0

B = 0 (λ > 0)

Let

uAB =
∇J0

A∥∥∇J0
A

∥∥ =− ∇J0
B∥∥∇J0
B

∥∥
Consider possible move in hyperplane ⊥ uAB .
For this, consider reduced Hessian matrices:

H ′A
0

= PAB H0
A PAB H ′B

0
= PAB H0

B PAB

where: PAB = I− [uAB] [uAB]t .
Analysis in orthogonal hyperplane is that of a stationary point of
type a and dimension N−1.
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Conclusion
Recommended strategy for multidisciplinary optimization

Design of Experiment
Select an appropriate set of initial designs

For each initial design :

• Perform a “COOPERATIVE-OPTIMIZATION’ phase :
at each iteration, all criteria improve

• Stop, or enter a “COMPETITIVE-OPTIMIZATION” phase :
• perform an eigen-analysis of local systems,
• define an appropriate split of variables, and
• establish the corresponding Nash equilibrium between

disciplines by SMOOTH CONTINUATION

1 Multi-criterion Aerodynamic Shape-Design Optimization and Inverse Problems Using Control Theory and Nash Games, Z.
Tang, J.-A. Désidéri and J. Périaux, Journal of Optimization Theory and Applications (JOTA), 135-1, 2007.

2 Split of Territories in Concurrent Optimization, J.-A. Désidéri, INRIA Research Report 6108, October 2007.
(http://hal.inria.fr/inria-00193944/fr/)

3 Multiple-Gradient Descent Algorithm (MGDA), J.-A. Désidéri, INRIA Research Report 6953, June 2009.
(http://hal.inria.fr/inria-00389811/fr/)
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