
Bilevel Derivative-Free Optimization
and its Application to Robust Optimization

Andrew R. Conn, IBM Research

(joint work with L. N. Vicente, Univ. Coimbra)

ADVANCED METHODS AND PERSPECTIVES IN NONLINEAR OPTIMIZATION AND CONTROL,

Toulouse, February 3-5, 2010

Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Growing sophistication of computer hardware and mathematical
algorithms and software and a more competitive and complex world
(which opens new possibilities for optimization).

Function evaluations costly and noisy (one cannot trust derivatives or
approximate them by finite differences).

Binary codes (source code not available or owned by a company) —
making automatic differentiation impossible to apply.

Legacy codes (written in the past and not maintained by the original
authors).

Lack of sophistication of the user (users need improvement but want
to use something simple).

2/52

Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Growing sophistication of computer hardware and mathematical
algorithms and software and a more competitive and complex world
(which opens new possibilities for optimization).

Function evaluations costly and noisy (one cannot trust derivatives or
approximate them by finite differences).

Binary codes (source code not available or owned by a company) —
making automatic differentiation impossible to apply.

Legacy codes (written in the past and not maintained by the original
authors).

Lack of sophistication of the user (users need improvement but want
to use something simple).

2/52

Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Growing sophistication of computer hardware and mathematical
algorithms and software and a more competitive and complex world
(which opens new possibilities for optimization).

Function evaluations costly and noisy (one cannot trust derivatives or
approximate them by finite differences).

Binary codes (source code not available or owned by a company) —
making automatic differentiation impossible to apply.

Legacy codes (written in the past and not maintained by the original
authors).

Lack of sophistication of the user (users need improvement but want
to use something simple).

2/52

Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Growing sophistication of computer hardware and mathematical
algorithms and software and a more competitive and complex world
(which opens new possibilities for optimization).

Function evaluations costly and noisy (one cannot trust derivatives or
approximate them by finite differences).

Binary codes (source code not available or owned by a company) —
making automatic differentiation impossible to apply.

Legacy codes (written in the past and not maintained by the original
authors).

Lack of sophistication of the user (users need improvement but want
to use something simple).

2/52

Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Growing sophistication of computer hardware and mathematical
algorithms and software and a more competitive and complex world
(which opens new possibilities for optimization).

Function evaluations costly and noisy (one cannot trust derivatives or
approximate them by finite differences).

Binary codes (source code not available or owned by a company) —
making automatic differentiation impossible to apply.

Legacy codes (written in the past and not maintained by the original
authors).

Lack of sophistication of the user (users need improvement but want
to use something simple).

2/52

Why Derivative-Free Optimization?

Some of the reasons to apply derivative-free optimization are the following:

Growing sophistication of computer hardware and mathematical
algorithms and software and a more competitive and complex world
(which opens new possibilities for optimization).

Function evaluations costly and noisy (one cannot trust derivatives or
approximate them by finite differences).

Binary codes (source code not available or owned by a company) —
making automatic differentiation impossible to apply.

Legacy codes (written in the past and not maintained by the original
authors).

Lack of sophistication of the user (users need improvement but want
to use something simple).

2/52

Simple Example with Unavailable Derivatives

Computation of areas of figures by random generation of points (the
derivatives of the area function are clearly unavailable):

3/52

Examples of Problems where Derivatives are Unavailable

Many known applications:

Engineering design (many examples).

Circuit design (tuning parameters of relatively small circuits using
accurate simulation like PowerSpice).

Molecular geometry optimization (minimization of the potential
energy of clusters).

Groundwater community problems.

Medical image registration.

Dynamic pricing.

Tuning of algorithmic parameters.

Automatic error analysis.

4/52

Limitations of Derivative-Free Optimization

In DFO convergence/stopping is typically slow (per function evaluation):

5/52

Pitfalls

The objective function not continuous or not well defined:

6/52

Pitfalls (continue)

The objective function not continuous or not well defined:

7/52

What Can We Solve?

With current state-of-the-art DFO methods one can expect to successfully
address problems where:

The evaluation of the function is expensive and/or computed with
noise.

The number of variables does not exceed, say, a few tens (in serial
computation; maximum ≈ 200).

The functions are not excessively nonsmooth.

Rapid asymptotic convergence is not of primary importance.

Only a few digits of accuracy are required.

... making the linear algebra of the algorithms relatively inexpensive.

8/52

What Can We Solve?

With current state-of-the-art DFO methods one can expect to successfully
address problems where:

The evaluation of the function is expensive and/or computed with
noise.

The number of variables does not exceed, say, a few tens (in serial
computation; maximum ≈ 200).

The functions are not excessively nonsmooth.

Rapid asymptotic convergence is not of primary importance.

Only a few digits of accuracy are required.

... making the linear algebra of the algorithms relatively inexpensive.

8/52

What Can We Solve?

With current state-of-the-art DFO methods one can expect to successfully
address problems where:

The evaluation of the function is expensive and/or computed with
noise.

The number of variables does not exceed, say, a few tens (in serial
computation; maximum ≈ 200).

The functions are not excessively nonsmooth.

Rapid asymptotic convergence is not of primary importance.

Only a few digits of accuracy are required.

... making the linear algebra of the algorithms relatively inexpensive.

8/52

What Can We Solve?

With current state-of-the-art DFO methods one can expect to successfully
address problems where:

The evaluation of the function is expensive and/or computed with
noise.

The number of variables does not exceed, say, a few tens (in serial
computation; maximum ≈ 200).

The functions are not excessively nonsmooth.

Rapid asymptotic convergence is not of primary importance.

Only a few digits of accuracy are required.

... making the linear algebra of the algorithms relatively inexpensive.

8/52

What Can We Solve?

With current state-of-the-art DFO methods one can expect to successfully
address problems where:

The evaluation of the function is expensive and/or computed with
noise.

The number of variables does not exceed, say, a few tens (in serial
computation; maximum ≈ 200).

The functions are not excessively nonsmooth.

Rapid asymptotic convergence is not of primary importance.

Only a few digits of accuracy are required.

... making the linear algebra of the algorithms relatively inexpensive.

8/52

What Can We Solve?

With current state-of-the-art DFO methods one can expect to successfully
address problems where:

The evaluation of the function is expensive and/or computed with
noise.

The number of variables does not exceed, say, a few tens (in serial
computation; maximum ≈ 200).

The functions are not excessively nonsmooth.

Rapid asymptotic convergence is not of primary importance.

Only a few digits of accuracy are required.

... making the linear algebra of the algorithms relatively inexpensive.

8/52

What Can We Solve?

With current state-of-the-art DFO methods one can expect to successfully
address problems where:

The evaluation of the function is expensive and/or computed with
noise.

The number of variables does not exceed, say, a few tens (in serial
computation; maximum ≈ 200).

The functions are not excessively nonsmooth.

Rapid asymptotic convergence is not of primary importance.

Only a few digits of accuracy are required.

... making the linear algebra of the algorithms relatively inexpensive.

8/52

Illustration of Curse of Dimensionality

Number of points needed to build a complete/determined quadratic
polynomial interpolant model:

n 10 20 50 100 200

(n+ 1)(n+ 2)/2 66 231 1326 5151 20301

9/52

Classes of Rigorous Algorithms (globally convergent)

Over-simplifying, all globally convergent DFO algorithms (model based or
direct search) must:

Guarantee some form of descent away from stationarity.

Guarantee some control of the geometry of the sample sets where the
objective function is evaluated.

Imply convergence of step size parameters to zero, indicating global
convergence to a stationary point.

By global convergence, we mean convergence to some form of stationarity
from arbitrary starting points.

10/52

Classes of Rigorous Algorithms (globally convergent)

Over-simplifying, all globally convergent DFO algorithms (model based or
direct search) must:

Guarantee some form of descent away from stationarity.

Guarantee some control of the geometry of the sample sets where the
objective function is evaluated.

Imply convergence of step size parameters to zero, indicating global
convergence to a stationary point.

By global convergence, we mean convergence to some form of stationarity
from arbitrary starting points.

10/52

Classes of Rigorous Algorithms (globally convergent)

Over-simplifying, all globally convergent DFO algorithms (model based or
direct search) must:

Guarantee some form of descent away from stationarity.

Guarantee some control of the geometry of the sample sets where the
objective function is evaluated.

Imply convergence of step size parameters to zero, indicating global
convergence to a stationary point.

By global convergence, we mean convergence to some form of stationarity
from arbitrary starting points.

10/52

Classes of Rigorous Algorithms (globally convergent)

Over-simplifying, all globally convergent DFO algorithms (model based or
direct search) must:

Guarantee some form of descent away from stationarity.

Guarantee some control of the geometry of the sample sets where the
objective function is evaluated.

Imply convergence of step size parameters to zero, indicating global
convergence to a stationary point.

By global convergence, we mean convergence to some form of stationarity
from arbitrary starting points.

10/52

Classes of Rigorous Algorithms (globally convergent)

Over-simplifying, all globally convergent DFO algorithms (model based or
direct search) must:

Guarantee some form of descent away from stationarity.

Guarantee some control of the geometry of the sample sets where the
objective function is evaluated.

Imply convergence of step size parameters to zero, indicating global
convergence to a stationary point.

By global convergence, we mean convergence to some form of stationarity
from arbitrary starting points.

10/52

The Book! (unashamed advertisement)

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to
Derivative-Free Optimization, MPS-SIAM Series on Optimization,
SIAM, Philadelphia, 2009.

11/52

Trust-Region Methods for DFO (basics)

Trust-region methods for DFO typically:

Attempt to form quadratic models (by interpolation and using
polynomials or radial basis functions)

mk(xk + ∆x) = f(xk) + g>k ∆x+
1
2

∆x>Hk∆x

based on well-poised sample sets.

=⇒ Well poisedness ensures fully linear or fully quadratic models.

Calculate a step ∆xk by approximately solving the trust-region
subproblem (TRS)

min
∆x∈B(xk;∆k)

mk(xk + ∆x).

12/52

Trust-Region Methods for DFO (basics)

Trust-region methods for DFO typically:

Attempt to form quadratic models (by interpolation and using
polynomials or radial basis functions)

mk(xk + ∆x) = f(xk) + g>k ∆x+
1
2

∆x>Hk∆x

based on well-poised sample sets.

=⇒ Well poisedness ensures fully linear or fully quadratic models.

Calculate a step ∆xk by approximately solving the trust-region
subproblem (TRS)

min
∆x∈B(xk;∆k)

mk(xk + ∆x).

12/52

Trust-Region Methods for DFO (basics)

Trust-region methods for DFO typically:

Attempt to form quadratic models (by interpolation and using
polynomials or radial basis functions)

mk(xk + ∆x) = f(xk) + g>k ∆x+
1
2

∆x>Hk∆x

based on well-poised sample sets.

=⇒ Well poisedness ensures fully linear or fully quadratic models.

Calculate a step ∆xk by approximately solving the trust-region
subproblem (TRS)

min
∆x∈B(xk;∆k)

mk(xk + ∆x).

12/52

Trust-Region Methods for DFO (basics)

Trust-region methods for DFO typically:

Attempt to form quadratic models (by interpolation and using
polynomials or radial basis functions)

mk(xk + ∆x) = f(xk) + g>k ∆x+
1
2

∆x>Hk∆x

based on well-poised sample sets.

=⇒ Well poisedness ensures fully linear or fully quadratic models.

Calculate a step ∆xk by approximately solving the trust-region
subproblem (TRS)

min
∆x∈B(xk;∆k)

mk(xk + ∆x).

12/52

Fully Linear Models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully linear if

It is has Lipschitz continuous first derivatives.

The following error bounds hold:

‖∇f(y)−∇m(y)‖ ≤ κeg ∆ ∀y ∈ B(x; ∆)

and
|f(y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x; ∆).

For a class of fully-linear models, the (unknown) constants κef , κeg > 0
must be independent of x and ∆.

13/52

Fully Linear Models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully linear if

It is has Lipschitz continuous first derivatives.

The following error bounds hold:

‖∇f(y)−∇m(y)‖ ≤ κeg ∆ ∀y ∈ B(x; ∆)

and
|f(y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x; ∆).

For a class of fully-linear models, the (unknown) constants κef , κeg > 0
must be independent of x and ∆.

13/52

Fully Linear Models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully linear if

It is has Lipschitz continuous first derivatives.

The following error bounds hold:

‖∇f(y)−∇m(y)‖ ≤ κeg ∆ ∀y ∈ B(x; ∆)

and
|f(y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x; ∆).

For a class of fully-linear models, the (unknown) constants κef , κeg > 0
must be independent of x and ∆.

13/52

Fully Linear Models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully linear if

It is has Lipschitz continuous first derivatives.

The following error bounds hold:

‖∇f(y)−∇m(y)‖ ≤ κeg ∆ ∀y ∈ B(x; ∆)

and
|f(y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x; ∆).

For a class of fully-linear models, the (unknown) constants κef , κeg > 0
must be independent of x and ∆.

13/52

Fully Quadratic Models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is has Lipschitz continuous second derivatives.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

and
|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully-quadratic models, the (unknown) constants
κef , κeg > 0, κeh > 0, must be independent of x and ∆.

14/52

Fully Quadratic Models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is has Lipschitz continuous second derivatives.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

and
|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully-quadratic models, the (unknown) constants
κef , κeg > 0, κeh > 0, must be independent of x and ∆.

14/52

Fully Quadratic Models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is has Lipschitz continuous second derivatives.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

and
|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully-quadratic models, the (unknown) constants
κef , κeg > 0, κeh > 0, must be independent of x and ∆.

14/52

Fully Quadratic Models

Given a point x and a trust-region radius ∆, a model m(y) around x is
called fully quadratic if

It is has Lipschitz continuous second derivatives.

The following error bounds hold:

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆ ∀y ∈ B(x; ∆)

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2 ∀y ∈ B(x; ∆)

and
|f(y)−m(y)| ≤ κef ∆3 ∀y ∈ B(x; ∆).

For a class of fully-quadratic models, the (unknown) constants
κef , κeg > 0, κeh > 0, must be independent of x and ∆.

14/52

Trust-Region Methods for DFO (basics : continued)

Set xk+1 to xk + ∆xk (successful) or to xk (unsuccessful) and
update ∆k depending on the value of

ρk =
f(xk)− f(xk + ∆xk)

mk(xk)−mk(xk + ∆xk)
.

Attempt to accept steps based on simple decrease, i.e., if

ρk > 0 ⇐⇒ f(xk + ∆xk) < f(xk).

15/52

Trust-Region Methods for DFO (basics : continued)

Set xk+1 to xk + ∆xk (successful) or to xk (unsuccessful) and
update ∆k depending on the value of

ρk =
f(xk)− f(xk + ∆xk)

mk(xk)−mk(xk + ∆xk)
.

Attempt to accept steps based on simple decrease, i.e., if

ρk > 0 ⇐⇒ f(xk + ∆xk) < f(xk).

15/52

Trust-Region Methods for DFO (main features)

Reduce ∆k only if ρk is small and the model is FL/FQ.

Accept new iterates based on simple decrease (ρk > 0) as long as the
model is FL/FQ.

Allow for model-improving iterations (when ρk is not large enough
and the model is not certifiably FL/FQ).

=⇒ Do not reduce ∆k.

Incorporate a criticality step (1st or 2nd order) when the ‘stationarity’
of the model is small.

=⇒ Internal cycle of reductions of ∆k.

16/52

Trust-Region Methods for DFO (main features)

Reduce ∆k only if ρk is small and the model is FL/FQ.

Accept new iterates based on simple decrease (ρk > 0) as long as the
model is FL/FQ.

Allow for model-improving iterations (when ρk is not large enough
and the model is not certifiably FL/FQ).

=⇒ Do not reduce ∆k.

Incorporate a criticality step (1st or 2nd order) when the ‘stationarity’
of the model is small.

=⇒ Internal cycle of reductions of ∆k.

16/52

Trust-Region Methods for DFO (main features)

Reduce ∆k only if ρk is small and the model is FL/FQ.

Accept new iterates based on simple decrease (ρk > 0) as long as the
model is FL/FQ.

Allow for model-improving iterations (when ρk is not large enough
and the model is not certifiably FL/FQ).

=⇒ Do not reduce ∆k.

Incorporate a criticality step (1st or 2nd order) when the ‘stationarity’
of the model is small.

=⇒ Internal cycle of reductions of ∆k.

16/52

Trust-Region Methods for DFO (main features)

Reduce ∆k only if ρk is small and the model is FL/FQ.

Accept new iterates based on simple decrease (ρk > 0) as long as the
model is FL/FQ.

Allow for model-improving iterations (when ρk is not large enough
and the model is not certifiably FL/FQ).

=⇒ Do not reduce ∆k.

Incorporate a criticality step (1st or 2nd order) when the ‘stationarity’
of the model is small.

=⇒ Internal cycle of reductions of ∆k.

16/52

Analysis of Trust-Region Methods (1st order)

Theorem (Book and SIOPT 2009 paper)

The trust-region radius converges to zero:

∆k −→ 0.

Theorem (Book and SIOPT 2009 paper)

If f is bounded below and has Lipschitz continuous first derivatives then

‖∇f(xk)‖ −→ 0.

=⇒ True for simple decrease.

=⇒ Use of fully linear models when necessary.

17/52

Analysis of Trust-Region Methods (1st order)

Theorem (Book and SIOPT 2009 paper)

The trust-region radius converges to zero:

∆k −→ 0.

Theorem (Book and SIOPT 2009 paper)

If f is bounded below and has Lipschitz continuous first derivatives then

‖∇f(xk)‖ −→ 0.

=⇒ True for simple decrease.

=⇒ Use of fully linear models when necessary.

17/52

Analysis of Trust-Region Methods (2nd order)

Theorem (Book and SIOPT 2009 paper)

The trust-region radius converges to zero (∆k −→ 0).

Theorem (Book and SIOPT 2009 paper)

If f is bounded below and has Lipschitz continuous second derivatives then

max
{
‖∇f(xk)‖,−λmin[∇2f(xk)]

}
−→ 0.

=⇒ True for simple decrease (under a modification in the trust-region
radius update).

=⇒ Use of fully quadratic models when necessary.

18/52

Analysis of Trust-Region Methods (2nd order)

Theorem (Book and SIOPT 2009 paper)

The trust-region radius converges to zero (∆k −→ 0).

Theorem (Book and SIOPT 2009 paper)

If f is bounded below and has Lipschitz continuous second derivatives then

max
{
‖∇f(xk)‖,−λmin[∇2f(xk)]

}
−→ 0.

=⇒ True for simple decrease (under a modification in the trust-region
radius update).

=⇒ Use of fully quadratic models when necessary.

18/52

Inexact Function Values (dynamic accuracy)

Instead of f(x) suppose we have f̄(x; εx) and we can enforce

|f(x)− f̄(x; εx)| ≤ εx.

Suppose then max{εx, εx+s} ≤ η′0 (m(x)−m(x+ s)).

One knows (TR book, by Conn, Gould, and Toint, 2000) that if

f̄(x; εx)− f̄(x+ s; εx+s)
m(x)−m(x+ s)

≥ η0

then
f(x)− f(x+ s)
m(x)−m(x+ s)

≥ η′0 − 2η0 > 0,

with 0 < η0 < η′
0/2 and η0 < 1.

19/52

Inexact Function Values (dynamic accuracy)

Instead of f(x) suppose we have f̄(x; εx) and we can enforce

|f(x)− f̄(x; εx)| ≤ εx.

Suppose then max{εx, εx+s} ≤ η′0 (m(x)−m(x+ s)).

One knows (TR book, by Conn, Gould, and Toint, 2000) that if

f̄(x; εx)− f̄(x+ s; εx+s)
m(x)−m(x+ s)

≥ η0

then
f(x)− f(x+ s)
m(x)−m(x+ s)

≥ η′0 − 2η0 > 0,

with 0 < η0 < η′
0/2 and η0 < 1.

19/52

Inexact Function Values (dynamic accuracy)

Instead of f(x) suppose we have f̄(x; εx) and we can enforce

|f(x)− f̄(x; εx)| ≤ εx.

Suppose then max{εx, εx+s} ≤ η′0 (m(x)−m(x+ s)).

One knows (TR book, by Conn, Gould, and Toint, 2000) that if

f̄(x; εx)− f̄(x+ s; εx+s)
m(x)−m(x+ s)

≥ η0

then
f(x)− f(x+ s)
m(x)−m(x+ s)

≥ η′0 − 2η0 > 0,

with 0 < η0 < η′
0/2 and η0 < 1.

19/52

Inexact Function Values (dynamic accuracy)

Instead of f(x) suppose we have f̄(x; εx) and we can enforce

|f(x)− f̄(x; εx)| ≤ εx.

Suppose then max{εx, εx+s} ≤ η′0 (m(x)−m(x+ s)).

One knows (TR book, by Conn, Gould, and Toint, 2000) that if

f̄(x; εx)− f̄(x+ s; εx+s)
m(x)−m(x+ s)

≥ η0

then
f(x)− f(x+ s)
m(x)−m(x+ s)

≥ η′0 − 2η0 > 0,

with 0 < η0 < η′
0/2 and η0 < 1.

19/52

Polynomial Models

Given a sample set Y = {y0, y1, . . . , yp}, a polynomial basis φ, and a
polynomial model m(y) = α>φ(y), the interpolating conditions are the
following system of linear equations:

M(φ, Y)α = f(Y),

where

M(φ, Y) =

φ0(y0) φ1(y0) · · · φp(y0)
φ0(y1) φ1(y1) · · · φp(y1)

...
...

...
...

φ0(yp) φ1(yp) · · · φp(yp)

 f(Y) =

f(y0)
f(y1)

...
f(yp)

 .

We use the natural basis of monomials, which in 2D is

φ = {1, x1, x2, x
2
1/2, x

2
2/2, x1x2}.

20/52

Polynomial Models

Given a sample set Y = {y0, y1, . . . , yp}, a polynomial basis φ, and a
polynomial model m(y) = α>φ(y), the interpolating conditions are the
following system of linear equations:

M(φ, Y)α = f(Y),

where

M(φ, Y) =

φ0(y0) φ1(y0) · · · φp(y0)
φ0(y1) φ1(y1) · · · φp(y1)

...
...

...
...

φ0(yp) φ1(yp) · · · φp(yp)

 f(Y) =

f(y0)
f(y1)

...
f(yp)

 .

We use the natural basis of monomials, which in 2D is

φ = {1, x1, x2, x
2
1/2, x

2
2/2, x1x2}.

20/52

Polynomial Models

Given a sample set Y = {y0, y1, . . . , yp}, a polynomial basis φ, and a
polynomial model m(y) = α>φ(y), the interpolating conditions are the
following system of linear equations:

M(φ, Y)α = f(Y),

where

M(φ, Y) =

φ0(y0) φ1(y0) · · · φp(y0)
φ0(y1) φ1(y1) · · · φp(y1)

...
...

...
...

φ0(yp) φ1(yp) · · · φp(yp)

 f(Y) =

f(y0)
f(y1)

...
f(yp)

 .

We use the natural basis of monomials, which in 2D is

φ = {1, x1, x2, x
2
1/2, x

2
2/2, x1x2}.

20/52

Example of the Interpolation Matrix (underdetermined)

Let us focus on the underdetermined case where (# points) < (# basis
components).

For instance, when n = d = 2, p = 3, and

φ = {1, x1, x2, x
2
1/2, x

2
2/2, x1x2},

the matrix M(φ, Y) becomes
1 y0

1 y0
2 (y0

1)2/2 y0
1y

0
2 (y0

2)2/2
1 y1

1 y1
2 (y1

1)2/2 y1
1y

1
2 (y1

2)2/2
1 y2

1 y2
2 (y2

1)2/2 y2
1y

2
2 (y2

2)2/2
1 y3

1 y3
2 (y3

1)2/2 y3
1y

3
2 (y3

2)2/2

 .

21/52

Example of the Interpolation Matrix (underdetermined)

Let us focus on the underdetermined case where (# points) < (# basis
components).

For instance, when n = d = 2, p = 3, and

φ = {1, x1, x2, x
2
1/2, x

2
2/2, x1x2},

the matrix M(φ, Y) becomes
1 y0

1 y0
2 (y0

1)2/2 y0
1y

0
2 (y0

2)2/2
1 y1

1 y1
2 (y1

1)2/2 y1
1y

1
2 (y1

2)2/2
1 y2

1 y2
2 (y2

1)2/2 y2
1y

2
2 (y2

2)2/2
1 y3

1 y3
2 (y3

1)2/2 y3
1y

3
2 (y3

2)2/2

 .

21/52

Underdetermined Polynomial Models

Consider a underdetermined quadratic polynomial model

m(y) = c+ g>y +
1
2
y>Hy

built with less than (n+ 1)(n+ 2)/2 points.

Theorem (Book)

If Y is ΛL–poised for linear interpolation/regression then

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + ‖H‖] ∆ ∀y ∈ B(x; ∆).

=⇒ Linear ΛL–poisedness is equivalent to ‖M(φL, Yscaled)†‖ ≤ ΛL.

22/52

Underdetermined Polynomial Models

Consider a underdetermined quadratic polynomial model

m(y) = c+ g>y +
1
2
y>Hy

built with less than (n+ 1)(n+ 2)/2 points.

Theorem (Book)

If Y is ΛL–poised for linear interpolation/regression then

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + ‖H‖] ∆ ∀y ∈ B(x; ∆).

=⇒ Linear ΛL–poisedness is equivalent to ‖M(φL, Yscaled)†‖ ≤ ΛL.

22/52

Underdetermined Polynomial Models

Consider a underdetermined quadratic polynomial model

m(y) = c+ g>y +
1
2
y>Hy

built with less than (n+ 1)(n+ 2)/2 points.

Theorem (Book)

If Y is ΛL–poised for linear interpolation/regression then

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + ‖H‖] ∆ ∀y ∈ B(x; ∆).

=⇒ Linear ΛL–poisedness is equivalent to ‖M(φL, Yscaled)†‖ ≤ ΛL.

22/52

Underdetermined Polynomial Models (continued)

Again,

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + ‖H‖] ∆ ∀y ∈ B(x; ∆).

23/52

Underdetermined Polynomial Models (continued)

Again,

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + ‖H‖] ∆ ∀y ∈ B(x; ∆).

Q: What should we do?

23/52

Underdetermined Polynomial Models (continued)

Again,

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + ‖H‖] ∆ ∀y ∈ B(x; ∆).

Q: What should we do?

A: One should build models by minimizing the norm of H.

23/52

Minimum Frobenius Norm Models

Recall the sample set Y = {y0, y1, . . . , yp} and the quadratic model

m(y) = c+ g>y +
1
2
y>Hy = α>LφL(x) + α>QφQ(x).

24/52

Minimum Frobenius Norm Models

Recall the sample set Y = {y0, y1, . . . , yp} and the quadratic model

m(y) = c+ g>y +
1
2
y>Hy = α>LφL(x) + α>QφQ(x).

MFN models can be built by minimizing the entries of the Hessian (in the
Frobenius norm) subject to the interpolation conditions:

min 1
4‖H‖

2
F

s.t. c+ g>(yi) + 1
2(yi)>H(yi) = f(yi), i = 0, . . . , p,

24/52

Minimum Frobenius Norm Models

Recall the sample set Y = {y0, y1, . . . , yp} and the quadratic model

m(y) = c+ g>y +
1
2
y>Hy = α>LφL(x) + α>QφQ(x).

MFN models can be built by minimizing the entries of the Hessian (in the
Frobenius norm) subject to the interpolation conditions:

min 1
4‖H‖

2
F

s.t. c+ g>(yi) + 1
2(yi)>H(yi) = f(yi), i = 0, . . . , p,

or, equivalently,
min 1

2‖αQ‖2

s.t. M(φ, Y)α = f(Y).

24/52

Minimum Frobenius Norm Models (continued)

The solution of this QP problem requires a linear solve with:

F (φ, Y) =
[
M(φQ, Y)M(φQ, Y)> M(φL, Y)

M(φL, Y)> 0

]
,

where
M(φ, Y) =

[
M(φL, Y) M(φQ, Y)

]
.

25/52

Minimum Frobenius Norm Models (continued)

The solution of this QP problem requires a linear solve with:

F (φ, Y) =
[
M(φQ, Y)M(φQ, Y)> M(φL, Y)

M(φL, Y)> 0

]
,

where
M(φ, Y) =

[
M(φL, Y) M(φQ, Y)

]
.

=⇒ ΛF –poisedness in the minimum Frobenius norm is equivalent to:

‖F (φ, Yscaled)−1‖ ≤ ΛF .

25/52

Minimum Frobenius Norm Models (continued)

Theorem (Book)

If Y is ΛF –poised in the minimum Frobenius norm sense then

‖H‖ ≤ CnCfΛF ,

where H is, again, the Hessian of the model.

Putting the two theorems together yields:

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + CnCfΛF] ∆ ∀y ∈ B(x; ∆).

=⇒ MFN models are fully linear.

26/52

Minimum Frobenius Norm Models (continued)

Theorem (Book)

If Y is ΛF –poised in the minimum Frobenius norm sense then

‖H‖ ≤ CnCfΛF ,

where H is, again, the Hessian of the model.

Putting the two theorems together yields:

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + CnCfΛF] ∆ ∀y ∈ B(x; ∆).

=⇒ MFN models are fully linear.

26/52

Minimum Frobenius Norm Models (continued)

Theorem (Book)

If Y is ΛF –poised in the minimum Frobenius norm sense then

‖H‖ ≤ CnCfΛF ,

where H is, again, the Hessian of the model.

Putting the two theorems together yields:

‖∇f(y)−∇m(y)‖ ≤ ΛL [Cf + CnCfΛF] ∆ ∀y ∈ B(x; ∆).

=⇒ MFN models are fully linear.

26/52

The Bilevel Programming Problem

min fu(xu, x`)
(xu,x`)∈Rnu×n`

subject to cui (xu, x`) = 0 i ∈ Eu

cui (xu, x`) ≥ 0 i ∈ Iu

where x` is the

arg min f `(xu, z`)
z`∈Rn`

subject to c`i(x
u, z`) = 0 i ∈ E`

c`i(x
u, z`) ≥ 0 i ∈ I`.

27/52

The Bilevel Programming Problem

min fu(xu, x`)
(xu,x`)∈Rnu×n`

subject to cui (xu, x`) = 0 i ∈ Eu

cui (xu, x`) ≥ 0 i ∈ Iu

where x` is the

arg min f `(xu, z`)
z`∈Rn`

subject to c`i(x
u, z`) = 0 i ∈ E`

c`i(x
u, z`) ≥ 0 i ∈ I`.

27/52

Why Bilevel? Why is it Hard?

Particular but important class of problems.

Unfortunately very difficult — even with available derivatives.

Even in the purely linear case it is non-convex.

Due to upper level constraints, the feasible region might be
disconnected.

Applications arise, e.g., in governmental, agricultural, and
environmental problems.

Applications also appear in engineering (e.g., robust optimization).

28/52

Why Bilevel? Why is it Hard?

Particular but important class of problems.

Unfortunately very difficult — even with available derivatives.

Even in the purely linear case it is non-convex.

Due to upper level constraints, the feasible region might be
disconnected.

Applications arise, e.g., in governmental, agricultural, and
environmental problems.

Applications also appear in engineering (e.g., robust optimization).

28/52

Why Bilevel? Why is it Hard?

Particular but important class of problems.

Unfortunately very difficult — even with available derivatives.

Even in the purely linear case it is non-convex.

Due to upper level constraints, the feasible region might be
disconnected.

Applications arise, e.g., in governmental, agricultural, and
environmental problems.

Applications also appear in engineering (e.g., robust optimization).

28/52

Why Bilevel? Why is it Hard?

Particular but important class of problems.

Unfortunately very difficult — even with available derivatives.

Even in the purely linear case it is non-convex.

Due to upper level constraints, the feasible region might be
disconnected.

Applications arise, e.g., in governmental, agricultural, and
environmental problems.

Applications also appear in engineering (e.g., robust optimization).

28/52

Why Bilevel? Why is it Hard?

Particular but important class of problems.

Unfortunately very difficult — even with available derivatives.

Even in the purely linear case it is non-convex.

Due to upper level constraints, the feasible region might be
disconnected.

Applications arise, e.g., in governmental, agricultural, and
environmental problems.

Applications also appear in engineering (e.g., robust optimization).

28/52

Why Bilevel? Why is it Hard?

Particular but important class of problems.

Unfortunately very difficult — even with available derivatives.

Even in the purely linear case it is non-convex.

Due to upper level constraints, the feasible region might be
disconnected.

Applications arise, e.g., in governmental, agricultural, and
environmental problems.

Applications also appear in engineering (e.g., robust optimization).

28/52

The Bilevel Problem Without Additional Constraints

We will ignore the constraints for each level:

min fu(xu, x`)
(xu,x`)∈Rnu×n`

where x` is the

arg min f `(xu, z`).
z`∈Rn`

29/52

The Bilevel Problem Without Additional Constraints

We will ignore the constraints for each level:

min fu(xu, x`)
(xu,x`)∈Rnu×n`

where x` is the

arg min f `(xu, z`).
z`∈Rn`

29/52

The Reduced Formulation

If we define the set of lower level minimizers (assumed a singleton) as

x`(xu) = arg min
{
f `(xu, x`) : x` ∈ Rn`

}
,

one can rewrite the bilevel problem in the upper level variables (so-called
reduced formulation)

min
xu∈Rnu

fu(xu, x`(xu)).

We will call fu(xu, x`(xu)) the reduced upper level function.

30/52

The Reduced Formulation

If we define the set of lower level minimizers (assumed a singleton) as

x`(xu) = arg min
{
f `(xu, x`) : x` ∈ Rn`

}
,

one can rewrite the bilevel problem in the upper level variables (so-called
reduced formulation)

min
xu∈Rnu

fu(xu, x`(xu)).

We will call fu(xu, x`(xu)) the reduced upper level function.

30/52

The Reduced Formulation

If we define the set of lower level minimizers (assumed a singleton) as

x`(xu) = arg min
{
f `(xu, x`) : x` ∈ Rn`

}
,

one can rewrite the bilevel problem in the upper level variables (so-called
reduced formulation)

min
xu∈Rnu

fu(xu, x`(xu)).

We will call fu(xu, x`(xu)) the reduced upper level function.

30/52

The Lower Level Solution

One could think of the lower level problem as a constraint of the upper
level problem.

Using the first-order conditions, that constraint looks like

∇zf
`(xu, z∗) = 0.

So, it seems reasonable to suggest that one needs to satisfy the first-order
conditions to first-order ...

... which suggests solving the lower level problem using fully quadratic
models.

31/52

The Lower Level Solution

One could think of the lower level problem as a constraint of the upper
level problem.

Using the first-order conditions, that constraint looks like

∇zf
`(xu, z∗) = 0.

So, it seems reasonable to suggest that one needs to satisfy the first-order
conditions to first-order ...

... which suggests solving the lower level problem using fully quadratic
models.

31/52

The Lower Level Solution

One could think of the lower level problem as a constraint of the upper
level problem.

Using the first-order conditions, that constraint looks like

∇zf
`(xu, z∗) = 0.

So, it seems reasonable to suggest that one needs to satisfy the first-order
conditions to first-order ...

... which suggests solving the lower level problem using fully quadratic
models.

31/52

The Lower Level Solution

One could think of the lower level problem as a constraint of the upper
level problem.

Using the first-order conditions, that constraint looks like

∇zf
`(xu, z∗) = 0.

So, it seems reasonable to suggest that one needs to satisfy the first-order
conditions to first-order ...

... which suggests solving the lower level problem using fully quadratic
models.

31/52

Our DFO Approach for Bilevel Optimization

Considers the reduced formulation.

Applies a trust-region interpolation-based method to both upper and lower
level problems.

Explores the theory of TR methods and the structure of the lower level
problem to gain efficiency:

1 solving the lower level problem inexactly,

2 reusing previous (upper level perturbed) evaluated points,

3 not ignoring dynamic accuracy in the TR methods.

32/52

Our DFO Approach for Bilevel Optimization

Considers the reduced formulation.

Applies a trust-region interpolation-based method to both upper and lower
level problems.

Explores the theory of TR methods and the structure of the lower level
problem to gain efficiency:

1 solving the lower level problem inexactly,

2 reusing previous (upper level perturbed) evaluated points,

3 not ignoring dynamic accuracy in the TR methods.

32/52

Our DFO Approach for Bilevel Optimization

Considers the reduced formulation.

Applies a trust-region interpolation-based method to both upper and lower
level problems.

Explores the theory of TR methods and the structure of the lower level
problem to gain efficiency:

1 solving the lower level problem inexactly,

2 reusing previous (upper level perturbed) evaluated points,

3 not ignoring dynamic accuracy in the TR methods.

32/52

Our DFO Approach for Bilevel Optimization

Considers the reduced formulation.

Applies a trust-region interpolation-based method to both upper and lower
level problems.

Explores the theory of TR methods and the structure of the lower level
problem to gain efficiency:

1 solving the lower level problem inexactly,

2 reusing previous (upper level perturbed) evaluated points,

3 not ignoring dynamic accuracy in the TR methods.

32/52

Our DFO Approach for Bilevel Optimization

Considers the reduced formulation.

Applies a trust-region interpolation-based method to both upper and lower
level problems.

Explores the theory of TR methods and the structure of the lower level
problem to gain efficiency:

1 solving the lower level problem inexactly,

2 reusing previous (upper level perturbed) evaluated points,

3 not ignoring dynamic accuracy in the TR methods.

32/52

Our DFO Approach for Bilevel Optimization

Considers the reduced formulation.

Applies a trust-region interpolation-based method to both upper and lower
level problems.

Explores the theory of TR methods and the structure of the lower level
problem to gain efficiency:

1 solving the lower level problem inexactly,

2 reusing previous (upper level perturbed) evaluated points,

3 not ignoring dynamic accuracy in the TR methods.

32/52

Our Trust-Region Interpolation-based Method

We follow Fasano, Morales, and Nocedal, 2009: When the iteration is
successful, the new point is always brought to the sample set.

Differently, we discard the sample point farthest away from the new iterate.

Differently, we start with less than pmax = (n+ 1)(n+ 2)/2 points and
use MFN models.

Thus, until |sample set| reaches pmax, we never discard points from the
sample set and always add new trial points independently of being
accepted or not as new iterates.

33/52

Our Trust-Region Interpolation-based Method

We follow Fasano, Morales, and Nocedal, 2009: When the iteration is
successful, the new point is always brought to the sample set.

Differently, we discard the sample point farthest away from the new iterate.

Differently, we start with less than pmax = (n+ 1)(n+ 2)/2 points and
use MFN models.

Thus, until |sample set| reaches pmax, we never discard points from the
sample set and always add new trial points independently of being
accepted or not as new iterates.

33/52

Our Trust-Region Interpolation-based Method

We follow Fasano, Morales, and Nocedal, 2009: When the iteration is
successful, the new point is always brought to the sample set.

Differently, we discard the sample point farthest away from the new iterate.

Differently, we start with less than pmax = (n+ 1)(n+ 2)/2 points and
use MFN models.

Thus, until |sample set| reaches pmax, we never discard points from the
sample set and always add new trial points independently of being
accepted or not as new iterates.

33/52

Our Trust-Region Interpolation-based Method

We follow Fasano, Morales, and Nocedal, 2009: When the iteration is
successful, the new point is always brought to the sample set.

Differently, we discard the sample point farthest away from the new iterate.

Differently, we start with less than pmax = (n+ 1)(n+ 2)/2 points and
use MFN models.

Thus, until |sample set| reaches pmax, we never discard points from the
sample set and always add new trial points independently of being
accepted or not as new iterates.

33/52

Our Trust-Region Interpolation-based Method (continued)

Differently also, we discard points that are too far from the current iterate
when the trust radius becomes small — can be seen as a form of criticality
step.

Thus, |sample set| might get below pmin = n+ 1 (the number required to
build fully linear models).

In such situations, we never reduce the trust radius.

34/52

Our Trust-Region Interpolation-based Method (continued)

Differently also, we discard points that are too far from the current iterate
when the trust radius becomes small — can be seen as a form of criticality
step.

Thus, |sample set| might get below pmin = n+ 1 (the number required to
build fully linear models).

In such situations, we never reduce the trust radius.

34/52

Our Trust-Region Interpolation-based Method (continued)

Differently also, we discard points that are too far from the current iterate
when the trust radius becomes small — can be seen as a form of criticality
step.

Thus, |sample set| might get below pmin = n+ 1 (the number required to
build fully linear models).

In such situations, we never reduce the trust radius.

34/52

Inexact Solution of the Lower Level Problem

Under reasonable assumptions, one can prove

|fu(xu, x`(xu))− fu(xu, x`
dfo(xu))| ≤ O(‖∇`m

`(xu, x`
dfo(xu))‖)

+ O((∆`)2).

Thus, if

‖∇`m
`(xu, x`

dfo(xu))‖ = O((∆u)2) and ∆` = O(∆u),

then

|fu(xu, x`(xu))− fu(xu, x`
dfo(xu))| = O((∆u)2),

and one can prove that the upper level model stays fully linear.

35/52

Inexact Solution of the Lower Level Problem

Under reasonable assumptions, one can prove

|fu(xu, x`(xu))− fu(xu, x`
dfo(xu))| ≤ O(‖∇`m

`(xu, x`
dfo(xu))‖)

+ O((∆`)2).

Thus, if

‖∇`m
`(xu, x`

dfo(xu))‖ = O((∆u)2) and ∆` = O(∆u),

then

|fu(xu, x`(xu))− fu(xu, x`
dfo(xu))| = O((∆u)2),

and one can prove that the upper level model stays fully linear.

35/52

Inexact Solution of the Lower Level Problem

Under reasonable assumptions, one can prove

|fu(xu, x`(xu))− fu(xu, x`
dfo(xu))| ≤ O(‖∇`m

`(xu, x`
dfo(xu))‖)

+ O((∆`)2).

Thus, if

‖∇`m
`(xu, x`

dfo(xu))‖ = O((∆u)2) and ∆` = O(∆u),

then

|fu(xu, x`(xu))− fu(xu, x`
dfo(xu))| = O((∆u)2),

and one can prove that the upper level model stays fully linear.

35/52

Inexact Solution of the Lower Level Problem

Under reasonable assumptions, one can prove

|fu(xu, x`(xu))− fu(xu, x`
dfo(xu))| ≤ O(‖∇`m

`(xu, x`
dfo(xu))‖)

+ O((∆`)2).

Thus, if

‖∇`m
`(xu, x`

dfo(xu))‖ = O((∆u)2) and ∆` = O(∆u),

then

|fu(xu, x`(xu))− fu(xu, x`
dfo(xu))| = O((∆u)2),

and one can prove that the upper level model stays fully linear.

35/52

Dynamic Accuracy Requirements

One way to approximately enforce the dynamic accuracy requirement is to
consider only

εxu+su ≤ η′0(mu(xu)−mu(xu + su))

which is satisfied if

‖∇`m
`(xu + su, x`

dfo(xu + su))‖ = O
(
min(‖su‖2, ‖su‖‖gu‖)

)
and

∆` = O
(√

min(‖su‖2, ‖su‖‖gu‖)
)
.

36/52

Dynamic Accuracy Requirements

One way to approximately enforce the dynamic accuracy requirement is to
consider only

εxu+su ≤ η′0(mu(xu)−mu(xu + su))

which is satisfied if

‖∇`m
`(xu + su, x`

dfo(xu + su))‖ = O
(
min(‖su‖2, ‖su‖‖gu‖)

)

and
∆` = O

(√
min(‖su‖2, ‖su‖‖gu‖)

)
.

36/52

Dynamic Accuracy Requirements

One way to approximately enforce the dynamic accuracy requirement is to
consider only

εxu+su ≤ η′0(mu(xu)−mu(xu + su))

which is satisfied if

‖∇`m
`(xu + su, x`

dfo(xu + su))‖ = O
(
min(‖su‖2, ‖su‖‖gu‖)

)
and

∆` = O
(√

min(‖su‖2, ‖su‖‖gu‖)
)
.

36/52

Reusing Previous (Upper Level Perturbed) Evaluated Points

Since
|f `(xu, x`)− f `(xu

pert, x
`)| ≤ O(‖xu − xu

pert‖),

if

‖xu − xu
pert‖ = O((∆`)3),

then

|f `(xu, x`)− f `(xu
pert, x

`)| = O((∆`)3).

This provide us a criterion to decide whether to accept previously
evaluated points in the building of the lower level model.

37/52

Reusing Previous (Upper Level Perturbed) Evaluated Points

Since
|f `(xu, x`)− f `(xu

pert, x
`)| ≤ O(‖xu − xu

pert‖),

if

‖xu − xu
pert‖ = O((∆`)3),

then

|f `(xu, x`)− f `(xu
pert, x

`)| = O((∆`)3).

This provide us a criterion to decide whether to accept previously
evaluated points in the building of the lower level model.

37/52

Reusing Previous (Upper Level Perturbed) Evaluated Points

Since
|f `(xu, x`)− f `(xu

pert, x
`)| ≤ O(‖xu − xu

pert‖),

if

‖xu − xu
pert‖ = O((∆`)3),

then

|f `(xu, x`)− f `(xu
pert, x

`)| = O((∆`)3).

This provide us a criterion to decide whether to accept previously
evaluated points in the building of the lower level model.

37/52

Reusing Previous (Upper Level Perturbed) Evaluated Points

Since
|f `(xu, x`)− f `(xu

pert, x
`)| ≤ O(‖xu − xu

pert‖),

if

‖xu − xu
pert‖ = O((∆`)3),

then

|f `(xu, x`)− f `(xu
pert, x

`)| = O((∆`)3).

This provide us a criterion to decide whether to accept previously
evaluated points in the building of the lower level model.

37/52

Matlab Code

We developed a relatively sophisticated Matlab implementation along the
lines described above.

The code handles bilevel problems with any type of linear constraints
except upper level constraints on the lower level variables.

Another feature not described is a warm start procedure for initialization
of lower level variables by forming a linear model of x`(xu).

38/52

Matlab Code

We developed a relatively sophisticated Matlab implementation along the
lines described above.

The code handles bilevel problems with any type of linear constraints
except upper level constraints on the lower level variables.

Another feature not described is a warm start procedure for initialization
of lower level variables by forming a linear model of x`(xu).

38/52

Matlab Code

We developed a relatively sophisticated Matlab implementation along the
lines described above.

The code handles bilevel problems with any type of linear constraints
except upper level constraints on the lower level variables.

Another feature not described is a warm start procedure for initialization
of lower level variables by forming a linear model of x`(xu).

38/52

Quadratic/Quartic 5× 5 Example

Black: basic version
Red: inexact lower level
Blue: inexact lower level & reuse of points

39/52

Quadratic/Quartic 4× 8 Example

Black: basic version
Red: inexact lower level
Blue: inexact lower level & reuse of points

40/52

Cubic/Quadratic 20× 20 example, with linear constraints

Black: basic version
Red: inexact lower level
Blue: inexact lower level & reuse of points

41/52

Cubic/Quadratic 20× 20 example, with linear constraints

Black: basic version Red: inexact lower level
Blue: inexact lower level & reuse of points

Same fu(xu, x`
dfo(xu)) values (but now as a function of the # ul

evaluations).
42/52

Robust Optimization

In many real-world optimization problems, data is uncertain and a
representation is calculated by some form of estimation.

In robust optimization, immunization against data uncertainty is made by
letting the uncertain parameters p vary in uncertainty sets P ...

... and by looking for a safe, worst case scenario:

min max f(x, p).
x∈Rn p∈P

Robust optimization also provides a tool for dealing with variables for
which the optimal values must be later implemented.

43/52

Robust Optimization

In many real-world optimization problems, data is uncertain and a
representation is calculated by some form of estimation.

In robust optimization, immunization against data uncertainty is made by
letting the uncertain parameters p vary in uncertainty sets P ...

... and by looking for a safe, worst case scenario:

min max f(x, p).
x∈Rn p∈P

Robust optimization also provides a tool for dealing with variables for
which the optimal values must be later implemented.

43/52

Robust Optimization

In many real-world optimization problems, data is uncertain and a
representation is calculated by some form of estimation.

In robust optimization, immunization against data uncertainty is made by
letting the uncertain parameters p vary in uncertainty sets P ...

... and by looking for a safe, worst case scenario:

min max f(x, p).
x∈Rn p∈P

Robust optimization also provides a tool for dealing with variables for
which the optimal values must be later implemented.

43/52

Robust Optimization

In many real-world optimization problems, data is uncertain and a
representation is calculated by some form of estimation.

In robust optimization, immunization against data uncertainty is made by
letting the uncertain parameters p vary in uncertainty sets P ...

... and by looking for a safe, worst case scenario:

min max f(x, p).
x∈Rn p∈P

Robust optimization also provides a tool for dealing with variables for
which the optimal values must be later implemented.

43/52

Robust Optimization as Bilevel

This problem can be reformulated as a bilevel optimization problem of the
form

min f(x, p)
(x,p)∈Rn×P

where p is the

arg min − f(x, z).
z∈P

44/52

Robust Optimization as Bilevel

This problem can be reformulated as a bilevel optimization problem of the
form

min f(x, p)
(x,p)∈Rn×P

where p is the

arg min − f(x, z).
z∈P

44/52

Small Robust Example

We tested our algorithm in the example reported in Bertsimas, Nohadani,
Teo, 2010.

The robust function is f(x, p) = g(x+ p), where x, p ∈ R2 and

g(x) = 2x6
1 − 12.2x5

1 + 21.2x4
1 − 6.4x3

1 − 4.7x2
1 + 6.2x1

+x6
2 − 11x5

2 + 43.3x4
2 − 74.8x3

2 + 56.9x2
2 − 10x2

− 0.1x2
1x

2
2 + 0.4x2

1x2 + 0.4x2
2x1 − 4.1x1x2.

The problem has one lower level constraint of the form ‖p‖ ≤ 0.5
describing implementation errors:

min
x∈R2,p∈R2

g(x+ p)

s.t. p ∈ arg min
{
−g(x+ p) : p ∈ R2, ‖p‖ ≤ 0.5

}
.

45/52

Small Robust Example

We tested our algorithm in the example reported in Bertsimas, Nohadani,
Teo, 2010.

The robust function is f(x, p) = g(x+ p), where x, p ∈ R2 and

g(x) = 2x6
1 − 12.2x5

1 + 21.2x4
1 − 6.4x3

1 − 4.7x2
1 + 6.2x1

+x6
2 − 11x5

2 + 43.3x4
2 − 74.8x3

2 + 56.9x2
2 − 10x2

− 0.1x2
1x

2
2 + 0.4x2

1x2 + 0.4x2
2x1 − 4.1x1x2.

The problem has one lower level constraint of the form ‖p‖ ≤ 0.5
describing implementation errors:

min
x∈R2,p∈R2

g(x+ p)

s.t. p ∈ arg min
{
−g(x+ p) : p ∈ R2, ‖p‖ ≤ 0.5

}
.

45/52

Small Robust Example

We tested our algorithm in the example reported in Bertsimas, Nohadani,
Teo, 2010.

The robust function is f(x, p) = g(x+ p), where x, p ∈ R2 and

g(x) = 2x6
1 − 12.2x5

1 + 21.2x4
1 − 6.4x3

1 − 4.7x2
1 + 6.2x1

+x6
2 − 11x5

2 + 43.3x4
2 − 74.8x3

2 + 56.9x2
2 − 10x2

− 0.1x2
1x

2
2 + 0.4x2

1x2 + 0.4x2
2x1 − 4.1x1x2.

The problem has one lower level constraint of the form ‖p‖ ≤ 0.5
describing implementation errors:

min
x∈R2,p∈R2

g(x+ p)

s.t. p ∈ arg min
{
−g(x+ p) : p ∈ R2, ‖p‖ ≤ 0.5

}
.

45/52

Bertsimas et al. Example (initial point A)

Black: basic version
Red: inexact lower level
Blue: inexact lower level & reuse of points

46/52

Bertsimas et al. Example (initial point B)

Black: basic version
Red: inexact lower level
Blue: inexact lower level & reuse of points

47/52

Application in Finance Optimization

We are currently solving robust portfolio problems involving the Omega
function.

48/52

What is the Omega Function?

Let the random variable R model the return for some financial instrument.

Consider a return level/threshold L.
The Omega function is the ratio of the weighted gains (above L) over the
weighted losses (below L):

Ω(R) =

∫ Lmax

L P(R ≥ r) dr∫ L
Lmin

P(R ≤ r) dr
.

For portfolio optimization, one considers Ω(x1R1 + · · ·+ xnRn) and
minimize over x1 + · · ·+ xn = 1 and x1, . . . , xn ≥ 0
and the single threshold parameter L is allowed to vary for robustness in
[0, 0.04].

min
(xu,x`)∈R7×[0,0.04]

−Ω(xu;x`)

s.t. x` ∈ arg min
{

Ω(xu; z`) : z` ∈ [0, 0.04]
}
.

49/52

What is the Omega Function?

Let the random variable R model the return for some financial instrument.
Consider a return level/threshold L.

The Omega function is the ratio of the weighted gains (above L) over the
weighted losses (below L):

Ω(R) =

∫ Lmax

L P(R ≥ r) dr∫ L
Lmin

P(R ≤ r) dr
.

For portfolio optimization, one considers Ω(x1R1 + · · ·+ xnRn) and
minimize over x1 + · · ·+ xn = 1 and x1, . . . , xn ≥ 0
and the single threshold parameter L is allowed to vary for robustness in
[0, 0.04].

min
(xu,x`)∈R7×[0,0.04]

−Ω(xu;x`)

s.t. x` ∈ arg min
{

Ω(xu; z`) : z` ∈ [0, 0.04]
}
.

49/52

What is the Omega Function?

Let the random variable R model the return for some financial instrument.
Consider a return level/threshold L.
The Omega function is the ratio of the weighted gains (above L) over the
weighted losses (below L):

Ω(R) =

∫ Lmax

L P(R ≥ r) dr∫ L
Lmin

P(R ≤ r) dr
.

For portfolio optimization, one considers Ω(x1R1 + · · ·+ xnRn) and
minimize over x1 + · · ·+ xn = 1 and x1, . . . , xn ≥ 0
and the single threshold parameter L is allowed to vary for robustness in
[0, 0.04].

min
(xu,x`)∈R7×[0,0.04]

−Ω(xu;x`)

s.t. x` ∈ arg min
{

Ω(xu; z`) : z` ∈ [0, 0.04]
}
.

49/52

What is the Omega Function?

Let the random variable R model the return for some financial instrument.
Consider a return level/threshold L.
The Omega function is the ratio of the weighted gains (above L) over the
weighted losses (below L):

Ω(R) =

∫ Lmax

L P(R ≥ r) dr∫ L
Lmin

P(R ≤ r) dr
.

For portfolio optimization, one considers Ω(x1R1 + · · ·+ xnRn) and
minimize over x1 + · · ·+ xn = 1 and x1, . . . , xn ≥ 0
and the single threshold parameter L is allowed to vary for robustness in
[0, 0.04].

min
(xu,x`)∈R7×[0,0.04]

−Ω(xu;x`)

s.t. x` ∈ arg min
{

Ω(xu; z`) : z` ∈ [0, 0.04]
}
.

49/52

Maximizing the Omega Function

8 assets = 7 upper level variables
1 return level = 1 lower level variable / robust variable

50/52

References

A. R. Conn and L. N. Vicente,
Bilevel derivative-free optimization and its application to robust
optimization, in preparation.

A. R. Conn, K. Scheinberg, and L. N. Vicente,
Global convergence of general derivative-free trust-region algorithms
to first and second order critical points,
SIAM J. on Optimization, Vol. 20, No. 1, pp. 387 — 415, 2009.

G. Fasano, J. L. Morales, and J. Nocedal,
On the Geometry Phase in Model-Based Algorithms for
Derivative-Free Optimization,
Optimization Methods and Software, Vol. 24, No. 1, pp. 145 — 154, 2008.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint,
Trust-Region Methods,
MPS-SIAM Series on Optimization, SIAM, Philadelphia, 2000.

51/52

The Book

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to
Derivative-Free Optimization, MPS-SIAM Series on Optimization,
SIAM, Philadelphia, 2009.

52/52

