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Application fields of quantum control methodologies

1. Quantum control: state transitions, laser induced chemistry,
magnetic and optical trapping.

2. Quantum computing: qubits, data operations.

3. Quantum transport, superfluids of atoms, vortices.

4. Construction of barriers, channels, etc. for few atoms.

5. Amplification of material waves: laser of atoms.

6. Semiconductor nanostructures.
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New challenges from quantum control problems

The possibility to manipulate states of atoms and molecules by
means of laser pulses or magnetic fields opens new technological
perspectives.

The solution of quantum control problems poses new challenges
involving optimal control theory, numerical analysis, and scientific
computing.

Quantum control models define an important class of nonlinear
control mechanisms.
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Quantum mechanical models

I One-particle Schrödinger equation, ψ = ψ(x , t) or ψ = ψ(t)

i
∂

∂t
ψ = (H0 + V )ψ

I BEC Condensate Gross-Pitaevskii equation, ψ = ψ(x , t)

i
∂

∂t
ψ =

(
−1

2
∇2 + V + g |ψ|2

)
ψ

I Time-dependent Kohn-Sham equation, ψi = ψi (x , t)

i
∂

∂t
ψi =

(
−1

2
∇2 + Vext + VHartree(ρ) + Vexc(ρ) + Vlaser

)
ψi

where ψi , i = 1, . . . ,N are the K-S orbitals; ρ =
∑N

i=1 |ψi |2 is the
one-electron density.

I Multi-particle (n) Schrödinger equation, ψ = ψ(x1, x2, . . . , xn, t)

i
∂

∂t
ψ =

−1

2

n∑
i=1

∇2
i +

n∑
i=1

Vi +
n∑

i,j=1

Uij + Vlaser

ψ
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Quantum mechanics structure and objectives

Dynamically stable systems exist with confining potentials V0{
−∇2 + V0(x)− Ej

}
φj(x) = 0, j = 1, 2, . . . ,

where φj(x) represent the eigenstates and Ej represent the energy.

Control may be required to drive state transitions φi −→ φj .

The expectation value of a physical observable A when the system
is in a state ψ is given by (ψ,Aψ).

Control may be required to maximize observable expectation.

An Hermitian operator O may represent a transformation
regardless of initial and final states (e.g., quantum gates).

Control may be required to obtain best performance of O.
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Quantum control mechanisms
Laser pulses, electric fields, and magnetic fields represent physically
meaningful control mechanisms. They are represented by
potentials that sum up to the stationary ones

V (x , t) = V0(x) + Vcontrol(x , t)

The dipole approximation of the electric control field modeling a
laser pulse results in the form

Vcontrol(x , t) = u(t) x

where u : (0,T )→ R is the modulating control amplitude.

A magnetic potential for manipulating a BEC is given by

Vcontrol(x , λ(t)) = −λ(t)2 d2

8c
x2 +

1

c
x4

where λ is the control function.
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Mathematical issues of quantum control problems

I Finite- and infinite-dimensional quantum systems
Finite-level systems are characterized by H0,V ∈ Cn×n, while
H0 is unbounded in ∞-dim systems and V : Ω× (0,T )→ R.

I Existence and uniqueness of optimal control
Existence of optimal solutions can usually be proven.
Uniqueness usually does not occur: for dipole control if u(t) is
a minimizer, then so is −u(t).

I Exact and approximate controllability
A finite-level system is controllable iff Lie{i H0, i V } = u(n),
the Lie algebra of traceless skew-Hermitian n × n matrices.
For infinite-dimensional systems, see K. Beauchard and J.M.
Coron’s result.

I Accurate and fast solution schemes
Gradient schemes, monotonic schemes, multigrid schemes,
Newton schemes.
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Optimal control of a finite-level quantum system

Quantum systems with a finite number of states model artificial atoms
(semiconductor quantum dots) and quantum devices (quantum gates)

Consider a Λ-type three-level system with two stable states ψ1 and ψ2

(conservative), and one unstable state ψ3 (dissipative).
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Finite-level quantum models

Governed by Schrödinger-type equations for a n-component wave
function ψ : [0,T ]→ Cn as follows

iψ̇(t) = H(u(t))ψ(t), ψ(0) = ψ0,

for t ∈ [0,T ] and T > 0 is a given terminal time.

The funcion u : [0,T ]→ Cm represents the external control field.

The linear Hamiltonian H(u) = H0 + V (u), consists of

A free Hamiltonian H0 ∈ Cn×n describing the unperturbed (uncontrolled)
system;

A control Hamiltonian V : C→ Cn×n modeling the coupling of the
quantum state to the control field u.
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The objective of the quantum control

Control is applied to reach a target state at t = T .
One needs to avoid population of dissipative states during the control
process, while having limited laser resources.
These modeling requirements may result in the following

J(ψ, u) =
1

2
|ψ(T )− ψd |2Cn +

γ

2
‖u‖2

L2(0,T ;C) +
µ

2
‖u̇‖2

L2(0,T ;C)

+
1

2

∑
j∈J

αj ‖ψj‖2
L2(0,T ;C)

where ψd is the desired terminal state; γ > 0 and µ, αi ≥ 0 are weighting
factors; ψj denotes the j-th (dissipative) component of ψ.
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First-order necessary optimality conditions

For the quantum optimal control problem

min J(ψ, u), subject to iψ̇(t) = H(u(t))ψ(t), ψ(0) = ψ0

Theorem
Suppose that x = (ψ, u) ∈ X is a local solution to the optimal control
problem. Then there exist (unique) Lagrange multipliers
p ∈ H1(0,T ; Cn) (µ > 0) satisfying

iψ̇ = H(u(·))ψ

i ṗ = H(u(·))∗p − αj(ψ)j

−µü + γu = <e(p · (V ′r (u)ψ)∗) + i <e(p · (V ′i (u)ψ)∗)

where

ψ(0) = ψ0, ip(T ) = ψ(T )− ψd , u(T ) = u(0) = 0.
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Second-order optimality conditions

Consider the following optimal control problem{
minu J(ψ, u) := 1

2 |ψ(T )− ψd |2 + γ
2 ‖u̇‖

2

c(ψ, u) := iψ̇ − aψ − u ψ = 0

We obtain

(∇2Ĵ δu, δu) = (W δu)(W δu)∗ + 2<e(p δu,W δu) + γ( ˙δu, ˙δu).

where W = W (ψ(u), u) = cψ(ψ(u), u)−1 cu(ψ(u), u).
Since p(t) is unitary, we have |p(t)| = |p(T )| = |ψ(T )− ψd |.

Using this result we obtain that |<e(p δu,W δu)| ≤ C |ψ(T )− ψd | ‖δu‖2,
for some C > 0 depending on u.
For sufficiently small values of tracking |ψ(T )− ψd | positiveness of the
reduced Hessian is obtained.
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Control of a Λ-type three-level model
Free Hamiltonian

H0 =
1

2

 −δ 0 0
0 δ 0
0 0 −iΓo


where the term −iΓo accounts for environment losses (spontaneous
photon emissions, scattering of gamma rays from crystals).
The coupling to the external field is given by

V (u) = −1

2

 0 0 µ1 u
0 0 µ2 u

µ1 u∗ µ2 u∗ 0


where µ1 and µ2 describe the coupling strengths of states ψ1 and ψ2 to
the inter-connecting state ψ3 (e.g., optical dipole matrix elements).
Initial and final states are given by

ψ0 =

 1
0
0

 and ψd =

 0
e−iδT

0
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Importance of optimization parameters

Smaller values of γ result in smaller |ψ(T )− ψd |C3 .
As µ increases, |ψ(T )− ψd |C3 increases: additional smoothness of the
control function (slightly) reduces the capability of tracking.
Larger µ makes the problem behaving better, resulting in a smaller
number of iterations.
By taking α = α3 > 0, dissipation is reduced and therefore better
tracking is achieved.

γ µ α |ψ(T )− ψd |C3 J CPU
10−7 10−7 0.05 8.6 · 10−4 2.37 · 10−3 19.6
10−7 10−9 0.05 3.7 · 10−4 5.46 · 10−4 55.6
10−7 0 0.05 6.9 · 10−5 1.41 · 10−4 424.8
10−7 0 0 1.2 · 10−3 2.33 · 10−6 763.1
10−4 10−4 0.05 3.3 · 10−2 6.52 · 10−2 47.3
10−4 10−6 0.05 4.4 · 10−3 9.03 · 10−3 42.3
10−4 0 0.05 2.7 · 10−3 5.68 · 10−3 17.2
10−4 0 0 8.3 · 10−3 3.34 · 10−4 5.5
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Optimal solutions
With δ = 10, Γ0 = 0.01, µ1 = µ2 = 1, and γ = 10−4, α3 = 0.01. We
have µ = 0 (top) and µ = 10−6 (bottom). Control (left) and state
evolution (right).
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Monotonic schemes for quantum control problems

Monotonic schemes have been initially introduced by Krotov. They are a
special case of gradient based methods.
Monotonic schemes have been further developed by Tannor, Zhu &
Rabitz, Maday, Turinici & Salomon.

Consider two fields u and u′, and the corresponding ψ and ψ′, and p and
p′. We have

J̃(u′)− J̃(u) =

∫ T

0

<e(p(s)∗ ·
(
V (u′(s))− V (u(s))

)
ψ′(s))

−γ
2

(
|u′(s)|2 − |u(s)|2

)
ds +

1

2
〈ψ′ − ψ,Λ(ψ′ − ψ)〉L2(0,T ;Cn).

This formula is the starting point for the design of monotonic schemes.
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Crank-Nicholson monotonic schemes
CNMS schemes represent a recent advance in monotonic schemes,
supported by theoretical results on convergence properties.

Algorithm (CNMS)
Given an initial control amplitude u0 and its associated state ψ0 and
Lagrange multiplier p0, suppose that ψk , pk , uk , have already been
computed. The derivation of ψk+1, pk+1, uk+1, is done as follows.
Forward propagation: Given ψk+1

0 = ψ0, compute ψk+1
`+1 from ψk+1

` by

Step 1. (Newton iteration) Compute uk+1
` by(

uk+1
<e,`

uk+1
=m,`

)
=

(
uk
<e,`

uk
=m,`

)
+

1

2

(
−δt

4
=mBk

` +
γ

2
I2
)−1

(
1

2
<eAk

`−γ
(

uk
<e,`

uk
=m,`

))
.

Step 2. Compute ψk+1
`+1 by

ψ`+1 =
(
Id −

δtH`
2i

)−1(
Id +

δtH`
2i

)
ψ` (1)

Backward propagation: Given pk+1
N = iψd , compute pk+1

` from pk+1
`+1 .
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Nonlinear conjugate gradient schemes
Gradient schemes are commonly used methods in computational physics.
A first advance in gradient-based schemes has been the extension of NCG
methods to problems defined on complex Hilbert spaces.
A sufficient descent condition

<e 〈gk , dk〉 ≤ −c ‖gk‖2

Step 1. Given k = 1, u1, d1 = −g1, if ‖g1‖ < tol then stop.

Step 2. Compute τk > 0 satisfying the standard Wolfe conditions.

Step 3. Let uk+1 = uk + τk dk .

Step 4. Compute gk+1 = ∇Ĵ(uk+1).

If ‖gk+1‖ < tolabs or ‖gk+1‖ < tolrel ‖g1‖ or k = kmax then stop.

Step 5. Compute βk using Dai-Yuan or Hager-Zhang schemes.

Step 6. Let dk+1 = −gk+1 + βk dk .

Step 7. Set k = k + 1, goto Step 2.
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Cascadic acceleration of NCG schemes

The cascadic approach results from combining nested iteration
techniques with a (one-grid) iterative scheme.
k = k0, . . . , kf index of grid hierarchy.
uk0 given starting approximation on the coarsest grid.
I k+1
k interpolation operator from k to k + 1.
NCGk(uk) the basic iteration; ∗ denotes the resulting solution.

Algorithm (Cascadic NCG method)

Step 1. Given k = k0, u∗k0
.

Step 2. Compute uk = NCGk(u∗k ).

Step 3. If k = kf then stop.

Step 4. Else if k < kf then interpolate u∗k+1 = I k+1
k uk .

Step 5. Set k = k + 1, goto Step 2.
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Performance of NCG,Cascadic-NCG, and CNMS schemes
The NCG scheme provides better performance while refining the
computational mesh. There is a lack of robustness of the CNMS scheme
for small γ = 10−3 and severe convergence criteria ‖∇Ĵ‖ < tolabs .

N = 2048 N = 4096
tolabs CPU(NCG) CPU(CNMS) CPU(NCG) CPU(CNMS)
10−4 1.17 1.28 2.32 1.39
10−5 4.32 12.63 9.26 15.92
10−6 5.01 48.00 17.21 no conv

Dramatic improvement with the Cascadic-NCG version

γ = 10−4 γ = 10−6

N CPU(NCG) CPU(C-NCG) CPU(NCG) CPU(C-NCG)
4096 40.54 6.26 254.70 58.10
8192 112.57 12.71 319.46 134.00

16384 312.17 27.42 626.84 279.46

Computational effort to solve for tolabs = 10−6; γ0 = 0.01, α3 = 0.05; in C-NCG coarsest level N = 1024.
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Optimal control of infinite-dimensional

quantum systems
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Bose Einstein condensates

Consider a bosonic gas (e.g. Rubidium) trapped in a magnetic field. By
lowering the confining potential, atoms with higher energy escape
(evaporation) while the remaining atoms condensate to a lower
temperature (ca. 10 sec, 50 micron).

Courtesy W. Ketterle, MIT
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Bose Einstein condensates model

The mean-field dynamics of the condensate is described by the
Gross-Pitaevskii equation (GPE)

i
∂

∂t
ψ(r, t) =

(
−1

2
∇2 + V (r, λ(t)) + g |ψ(r, t)|2

)
ψ(r, t)

We consider V (r, λ(t)) is a three-
dimensional potential produced by
a magnetic microtrap. The control
function λ(t) describes the varia-
tion of the confining potential with
time.
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Total control of matter waves

Trapping and coherent manipulation of cold neutral atoms in microtraps
near surfaces of atomic chips is the focus of the present research towards
total control of matter waves at small scales.

This achievement has boosted developments in the atomic
interferometry, the construction of quantum gates, the microscopic
magnetic field imaging, quantum data encoding, etc..

At the base of all these developments is the ability to manipulate
Bose-Einstein condensates (BEC) subject to a control potential
V (x , λ(t)) where λ(t) parameterizes the trapping field.

We consider the problem to split and transport a BEC being confined in
a single well V (x , 0) at t = 0 to a double well V (x , 1) at time t = T .
We have

V (x , λ(t)) = −λ(t)2 d2

8c
x2 +

1

c
x4

where c = 40 and d is the width of the double well potential.

Alfio Borz̀ı Theoretical and numerical aspects of quantum control problems



Optimal control formulation and optimality system
Consider a BEC at the initial state ψ0 and a target state ψd .

J(ψ, λ) =
1

2

(
1−

∣∣〈ψd |ψ(T )〉
∣∣2)+

γ

2

∫ T

0

(
λ̇(t)

)2

dt

Optimal control problem: Minimize the cost function J(ψ, λ) subject to
the condition that ψ fulfills the Gross-Pitaevskii equation.
The optimal solution is characterized by the optimality system

i
∂

∂t
ψ =

(
−1

2
∇2 + Vλ + g |ψ|2

)
ψ

i
∂

∂t
p =

(
−1

2
∇2 + Vλ + 2g |ψ|2

)
p + g ψ2 p∗

γλ̈ = −<e〈ψ|∂Vλ
∂λ
|p〉 ,

where 〈u, v〉 =
∫

Ω
u(x)∗v(x) dx . We have the initial and terminal

conditions

ψ(0) = ψ0 and ip(T ) = −〈ψd |ψ(T )〉ψd

λ(0) = 0 , λ(T ) = 1 .
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The choice of the control space and the gradient
For a given potential V (x , λ(t)), we have a unique ψ(λ) = ψ(x , t). In
terms of λ we have the reduced objective Ĵ(λ) = J(ψ(λ), λ).
The Taylor series of Ĵ(λ) in a Hilbert space X is

Ĵ(λ+ εϕ) = Ĵ(λ) + ε
(
∇Ĵ(λ), ϕ

)
X

+
ε2

2

(
[∇2Ĵ(λ)]ϕ,ϕ

)
X

+ O(ε3)

For X = L2(0,T ; R), the reduced gradient is given

∇ĴL2 (λ) = −γ λ̈−<e〈ψ|∂Vλ
∂λ
|p〉,

In the case X = H1(0,T ; R) formulation, we have that

− d2

dt2
[∇ĴH1 (λ)] = −γλ̈−<e〈ψ, ∂Vλ

∂λ
p〉,

with [∇Ĵ(λ)](0) = 0 and [∇Ĵ(λ)](T ) = 0.

The H1 gradient ∇ĴH1 (λ) has the same regularity as λ, while the L2

gradient does not.
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Optimal controls obtained on differente X spaces

Figure: Dependence of the optimal control function on the regularization
parameter γ for the L2 and H1 spaces. More oscillating controls are obtained
with smaller γ. M = 3200 time steps with g = 10 and T = 7.5.
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Hager-Zhang Nonlinear conjugate gradient on X space

Step 1. Given k = 1, λ1, d1 = −g1, if ‖g1‖X < tol then stop.

Step 2. Compute τk > 0 satisfying the Armij-Wolfe conditions

Ĵ(λk + τkdk) ≤ Ĵ(λk) + δ τk (gk , dk)X

(g(λk + τkdk), dk)X > σ (gk , dk)X , 0 < δ < σ < 1/2

Step 3. Let λk+1 = λk + τk dk .

Step 4. Compute gk+1 = ∇ĴX (λk+1).

If ‖gk+1‖X < tolabs or ‖gk+1‖X < tolrel ‖g1‖X or k = kmax then
stop.

Step 5. Compute βk by

βk =
(σk , gk+1)X

(dk , yk)X
, σk = yk − 2dk

(yk , yk)X

(yk , dk)X
, yk = gk+1 − gk

Step 6. Let dk+1 = −gk+1 + βk dk .

Step 7. Set k = k + 1, goto Step 2.
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BFGS on X space
With BFGS the search direction is given by pk = −Hk ∇Ĵ(λk).
By the Sherman-Morrison-Woodbury formula, we establish a recurrence
for H.

Hk+1 = Hk +
s>k yk + y>k Hkyk

(s>k yk)2
(sks

>
k )− Hkyks

>
k + sky

>
k Hk

s>k yk

where sk = τkpk . Supposing X is either L2(0,T ; R) or H1(0,T ; R), the
function space analog of the outer product is a dyadic operator
x ⊗ y : X → X . The action of this operator on a third element v ∈ X
can be expressed in terms of the inner product (x ⊗ y) v = (y , z)X v .
From the recursion relation for H, we obtain

pk = −H0gk −
k−1∑
j=0

cj [dj(sj , gk)X sj − (zj , gk)X sj − (sj , gk)X zj ]

where cj = (sj , yj)
−1
X , dj = 1 + cj(yj , zj), and for zk = Hkyk , we have.

zk = H0yk +
k−1∑
j=0

cj {[dj(sj , yk)X − (zj , yk)X ] sj − (sj , yk)X zj} .
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Results with HZ-NCG and BFGS on H1 space

mesh Ĵmin ‖∇Ĵmin‖ iterations CPU time (sec)
400 1.6605× 10−2 1.4288× 10−1 15 3.8407× 101

800 5.5963× 10−4 4.5284× 10−2 62 2.8107× 102

1600 2.9634× 10−4 1.0733× 10−2 30 3.6334× 102

3200 1.0562× 10−4 3.6378× 10−3 37 9.6153× 102

Table: Results with H1-based BFGS minimization with g=10 and T=6.Alfio Borz̀ı Theoretical and numerical aspects of quantum control problems



MultiGrid OPTimization framework
The MGOPT solution to the optimization problem minλ Ĵ(λ) requires to
define a hierarchy of minimization problems

min
λk

Ĵk(λk) k = 1, 2, . . . , L

where λk ∈ Xk and Ĵk(·) is the reduced objective.

Among spaces Xk , restriction operators I k−1
k : Xk → Xk−1 and

prolongation operators I k
k−1 : Xk−1 → Xk are defined.

Require that (I k−1
k u, v)k−1 = (u, I k

k−1v)k for all u ∈ Xk and v ∈ Xk−1.

We also choose an optimization scheme as ’smoother’

λ`k = Ok (λ`−1
k )

That provides sufficient reduction

Ĵk(Ok(λ`k)) < Ĵk(λ`k)− η‖∇Ĵk(λ`k)‖2

for some η ∈ (0, 1).
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MGOPT Algorithm
Initialize λ0

k . If k = 1, solve min
λk

Ĵk(λk)− (fk , λk)k and return. Else if

k > 1,

1. Pre-optimization: λ`k = Ok(λ`−1
k , fk), ` = 1, 2, . . . , γ1

2. Coarse grid problem
Restrict the solution: λγ1

k−1 = I k−1
k λγ1

k

Fine-to-coarse correction: τk−1 = ∇Ĵk−1(λγ1

k−1)− I k−1
k ∇Ĵk(λγ1

k )

fk−1 = I k−1
k fk + τk−1

Apply MGOPT to the coarse grid problem:

min
λk−1

Ĵk−1(λk−1)− (fk−1, λk−1)k−1

3. Coarse grid correction
Prolongate the error: d = I k

k−1(λk−1 − λγ1

k−1)
Perform a line search in the direction d to obtain a step length αk .
Coarse grid correction: λγ1+1

k = λγ1

k + αkd

4. Post-optimization: λ`k = Ok(λ`−1
k , fk), ` = γ1 + 2, . . . , γ1 + γ2 + 1
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Computational performance of CNCG and MGOPT

CNCG MGOPT

γ 1
2

(
1−

∣∣〈ψd , ψ(T )〉
∣∣2) CPU 1

2

(
1−

∣∣〈ψd , ψ(T )〉
∣∣2) CPU

10−2 2.23 · 10−2 17 9.69 · 10−4 116
10−4 4.54 · 10−4 202 6.01 · 10−4 82
10−6 1.38 · 10−2 14 8.78 · 10−4 78

Table: Computational performance of the CNCG and MGOPT schemes; T = 7.5. Mesh 128× 1250,
f = 256× 2500.

CNCG MGOPT

g 1
2

(
1−

∣∣〈ψd , ψ(T )〉
∣∣2) CPU 1

2

(
1−

∣∣〈ψd , ψ(T )〉
∣∣2) CPU

25 3.89 · 10−4 53 7.08 · 10−4 149
50 2.35 · 10−3 80 9.84 · 10−3 76
75 5.54 · 10−3 90 1.85 · 10−3 163

100 4.94 · 10−1 50 5.44 · 10−3 257

Table: Computational performance of the CNCG and MGOPT schemes for different values of g ; T = 7.5,

γ = 10−4, mesh 128× 1250.
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Time evolution for linear and optimized λ control
The linear λ(t) = t/T is the standard choice for the optimal control
(left).

Tracking and control profile
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Figure: The function |ψ(x, t)| on the space-time domain (top) for the linear (left) and optimized (right)
control. The corresponding profiles at t = T (bottom, continuous line) compared to the desired state (dashed

line). The tracking error 1
2

`
1−

˛̨
〈ψd , ψ(T )〉

˛̨2´
results 6.26 10−2 (lin) and 1.22 10−3 (opt). MGOPT, Mesh

128× 1250; γ = 10−4.
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Dipole quantum control
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Electronic states of a charged particle in a well potential

The control of quantum electronic states has a host of applications such
as control of photochemical processes and semiconductor lasers.

Consider a confining potential V0(x) with a ’well’ envelope. The
eigenproblem{

−∂2
x + V0(x)− Ej

}
φj(x) = 0, j = 1, 2, . . . ,

defines eigenfunctions representing the eigenstates with energy Ej .

A representative potential with applications in semiconductor
nanostructures is the infinite barrier well potential where V0(x) = 0 for
x ∈ (0, `) and V0(0) = +∞ and V0(`) = +∞.
The infinite barrier condition is equivalent to homogeneous Dirichlet
boundary conditions for the wavefunction and thus we have

Ej =
j2π2

`2
and φj(x) = sin(jπx/`).
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Electric dipole transitions and a GaAs quantum well

Transitions φj −→ φk
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Electric dipole control

Consider a control field modeling a laser pulse. Using the dipole
approximation results in the following

V (x , t) = V0(x) + u(t) x

where u : (0,T )→ R is the modulating control amplitude.
The quantum state of a charged particle subject to this potential is
governed by the time-dependent Schrödinger equation (c(ψ, u) = 0)

i
∂

∂t
ψ(x , t) =

{
− ∂

∂x2
+ V (x , t)

}
ψ(x , t), (x , t) ∈ Q = Ω× (0,T ),

Objective of the control

J(ψ, u) :=
1

2

(
1− ‖Pψ(·,T )‖2

H

)
+
γ

2
‖u‖2

U

where the projector Pψ = (ψd , ψ)H ψd and ‖u‖2
U = ‖u‖2 + α ‖u̇‖2
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Dipole control optimality system
Introduce the Lagrangian

L(ψ, u, p) = J(ψ, u) + <e

T∫
0

∫
Ω

p∗(x , t)c(ψ, u)(x , t) dxdt

where p is the Lagrange multiplier. The following first-order optimality
system characterizes the optimal solution{

i∂t + ∂2
x − V0(x)− u(t) x

}
ψ(x , t) = 0{

i∂t + ∂2
x − V0(x)− u(t) x

}
p(x , t) = 0

−γ u + γα ü + <e

∫
Ω

p∗(x , t) x ψ(x , t) dx = 0

with homogeneous Dirichlet boundary conditions, and initial and terminal
conditions given by

ψ(x , 0) = ψ0(x)

p(x ,T ) = i (ψd(·), ψ(·,T ))H ψd(x)

u(0) = 0, u(T ) = 0
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Discretization: modified Crank-Nicholson scheme

Our MCN scheme results in the following

ψk − ψk−1 = − iδt

4
[H(tk) + H(tk−1)][ψk + ψk−1].

Spatial discretization Hk of the Hamiltonian H(tk) is by linear FEM.
We have that Hk = H>k , which is important for preserving unitarity of
the time-stepping method. Let Ak = δt

4 [Hk + Hk−1].

Bk =

(
I Ak

−Ak I

)
.

This gives the following representation of the equality constraint

ck(y,u) = Bkyk − B>k yk−1, yk =

(
<e[ψk ]
=m[ψk ]

)
,

where y is a compact notation for the set of state vectors at each time
step y1, . . . , yNt and similarly for u.
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Discrete optimality system
Let S corresponds to multiplication by i . We have that

S =

(
0 −I
I 0

)
, (ψd , ψ)H corresponds to

(
yd
>

yd
>S

)
y

In this representation, we can rewrite the objective in the form

J(y,u) =
1

2

[
1− y>Nt

(
yd −Syd

)( yd
>

yd
>S

)
yNt

]
+
γ

2
u>Ku

The matrix K is the discretization of I − α∂2
t . We have the Lagrangian

L(y,u,p) = J(y,u) +
Nt∑

k=1

p>k ck(y,u)

Differentiating this Lagrangian with respect to its arguments and setting
the derivatives to zero gives the discrete optimality system

Bkyk = B>k yk−1

B>k pk = Bk+1pk+1

γKu = f
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Results with globalized Newton method: optimal controls

Optimal controls for transitions from the first state to the second, the
third, and the fifth states.

Alfio Borz̀ı Theoretical and numerical aspects of quantum control problems



Results with globalized Newton method: minimization

Iteration JSD − J∗ JNCG − J∗ JKN − J∗

1 2.4969× 10−1 2.4969× 10−1 2.4969× 10−1

2 1.3070× 10−2 1.3070× 10−2 1.5346× 10−2

3 6.4184× 10−3 6.4184× 10−3 5.1099× 10−3

4 5.5337× 10−3 5.3438× 10−3 2.2381× 10−4

5 4.8170× 10−3 3.1011× 10−3 1.8383× 10−4

6 4.2081× 10−3 2.3384× 10−3 1.6253× 10−5

7 3.6768× 10−3 1.2475× 10−3 2.7534× 10−6

8 3.2177× 10−3 9.1869× 10−5 3.3921× 10−7

9 2.8141× 10−3 5.9258× 10−5 4.7022× 10−9

Table: Convergence of the SteepestDescent scheme, the NonlinearCG
scheme, and the KrylovNewton scheme to reach the optimal cost
J∗ = J(u∗).
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