

# RTRA SMARTWING research axis & EMORPH EU project proposal

ONERA-DCSD activities : Real-time Flight Control Laws

Clément TOUSSAINT, Frank JOUHAUD, Carsten DÖLL



retour sur innovation

## **Outline**

- 1. DCSD research activities
- 2. Flight control
- 3. Some projects
  - > IMMUNE
  - AVISAC
  - > DEVIS
- 4. Proposal of RTRA Smartwing and EMORPH activities



## DCSD: Scientific competences & fields of activity

Control Flight Dynamics

Artificial Intelligence Robotics, Cognitive Sciences

Industrial and experimental applications

Design & Performances air- & spacecraft

Operations of
air- & spacecraft:
autonomy, human factors,
control management architectures

Methods & Tools for Guidance & Control

Methods & Tools
for
Supervision & Decision

Development of methods and tools



# **Experimental platform ACTION / ROSACE / ReSSAC**























## Feedback control of a dynamic system





## Flight dynamics

#### Control inputs (A320): thrust and control surfaces





## Flight dynamics

#### **Measurements**

- longitudinal motion
  - angle of attack
  - airspeed
  - flight path angle or pitch angle
  - pitch rate
  - load factor nx
  - load factor nz
  - vertical position (altitude)
  - longitudinal position

#### lateral motion

- sideslip angle
- roll rate
- yaw rate
- roll angle
- load factor ny
- lateral position

#### environment

- static pressure
- temperature

#### morphing control surface

• chordwise deflections of the surface

#### **Perturbations**

- external
  - wind
  - turbulence
- internal
  - friction
  - electrical resistance
- parameter uncertainties
  - aerodynamic coefficients
  - mass
  - inertia



## Global objectives

 Control, guidance & management systems are a main issue during the design and development process of air- & spacecraft

## Global objectives:

- 1. Safety and certification
- 2. Complexification of systems and of the performance criteria
- 3. Increasing automatisation of the control & management functions
- 4. Improvement of the design
- 5. Extension of air- & spacecraft performances



# ONERA – DLR Project IMMUNE (2006-2009)

IMMUNE

ONERA-DLR CTARP FMS-04
Intelligent Monitoring
and Managing of
UNexpected Events



## **Objectives:**

Demonstration of the capability and viability of :

- intelligent monitoring (fault detection, isolation and estimation)
- managing (decision what to do)
- fault handling (fault monitoring & fault tolerant control, pilot information)
  - ...of unexpected events during flight with the aim to improve safety and autonomy and to increase flight envelope margins.



## **Project AVISAC (2005-2008)**

## **Objectives and main realisations**

- Answer to the question of the interest of active flexibility
  - propose pertinent concepts
  - numerical and experimental validations
  - optimisation of a wing with « active flexibility »
- Produce advances in the belonging scientific fields
  - Design of innovative structures
  - Design of a flexible wing
  - knowledge and modelling of aeroelastic phenomena



demonstrator active structure

#### tool VoilSoup, then MDO





# **Project DEVIS (started in 2011)**

## Demonstrator of a wing with innovative actuators

- All electrical aircraft with several distributed electrical actuators instead of mechanical drives
- Composite Aircraft (with flexible hinge): coopération SME
   Protoplane
- Wing loading alleviation
- Control and Reconfiguration of distributed actuators



# Proposal of activities in RTRA Smartwing - Dynamorph and EMORPH

### 1. Shape feedback controller design

- In order to obtain the optimal shape given by the aerodynamists in **real time** for all flight conditions while the wing is subject to external perturbations, modelling errors, etc. in cooperation with Laplace
- Three steps (low frequency, high frequency and hybrid version) as proposed in **Dynamorph**
- Open and Closed loop control design at control surface level

### 2. Flight control evaluation

- In the case of a morphing control surface, we propose to evaluate the **impact of this morphing device on an existing control law** (for example the one of IMMUNE) in terms of performances due to a control surface efficiency loss
- Evaluation in terms of handling qualities and autopilot performances at A/C level



# Proposal of activities in RTRA Smartwing - Dynamorph and EMORPH

### 3. Use of the wing demonstrator DEVIS

- In the case of a morphing control surface, this control surface could be compared to the classical control surface on the DEVIS demonstrator (compatibility aspects!)
- Comparison in terms of control surface efficiencies at A/C level

